Let \(f \) be a P-selector function for SAT. We give a deterministic polynomial-time algorithm for SAT. On input \(F \), without loss of generality, let the variables be, for some \(k \), \(v_1, v_2, \ldots, v_k \) (otherwise rename the variables so that this holds). If \(k = 0 \) we are done; \(F \) has no variables and can be evaluated in polynomial time. Otherwise, proceed as follows. Let \(F_{\text{list}} \) denote \(F \) with the substitutions listed in \(\text{list} \) performed. For example, \(F_{v_k=1} \) denotes \(F \) with \(v_k \) assigned the value true (in such lists, 1 will denote true and 0 will denote false). Run \(f(F_{v_k=1}, F_{v_k=0}) \). Note that

\[F \in \text{SAT} \iff f(F_{v_k=1}, F_{v_k=0}) \in \text{SAT}. \]

If \(k = 1 \) then we are done; \(f(F_{v_k=1}, F_{v_k=0}) \) has no unassigned variables and can be evaluated in polynomial time. If \(k > 1 \), let \(b_k = 1 \) if \(f(F_{v_k=1}, F_{v_k=0}) = F_{v_k=1} \) and otherwise let \(b_k = 0 \). Run \(f(F_{v_k=b_k}, v_{k-1}=1, F_{v_k=b_k}, v_{k-1}=0) \). Note that

\[F \in \text{SAT} \iff f(F_{v_k=b_k}, v_{k-1}=1, F_{v_k=b_k}, v_{k-1}=0) \in \text{SAT}. \]

If \(k = 2 \) we are done via evaluating \(f(F_{v_k=b_k}, v_{k-1}=1, F_{v_k=b_k}, v_{k-1}=0) \), which has no unassigned variables. Otherwise, continue in a similar fashion. After at most \(k \) applications of \(f \) to pairs of formulas each no longer than the original input, we have correctly determined whether \(F \in \text{SAT} \).