
1

From O(n α(n)) to O(n α*(n))

Recent Results for Splay Trees

Joan M. Lucas
The College at Brockport

State University of New York

Western New York Theory Day
May 2, 2008

Based on: “Splay Trees, Davenport-Schinzel Sequences, and the Deque
Conjecture”, Seth Pettie, SODA, January 2008

Binary Search Tree - Search Operation

1

4

3

5

7

6

2

13

12

11

10

9

8

21

20

18

17

16

15

14

19

Search of target key z walk down from the root

Cost of search = depth(z) + 1

target key z = 15

cost of search = 5

2

Search Problem

Given binary search tree T0 and a sequence of target keys X= { x1, x2, x3, …. xm }

Search for and locate each key at total minimal cost

T0

x1

x3

x2

x4 x1

x3

x2

x4

x1

x3

x2

x4
x1

x3

x2

x4

assume m ≥ n

Balanced Binary Search Trees

AVL (height balanced)

Red-black

height of tree = O(log n)

Drawbacks:

•Extra memory (balance factor, color)

•Not adaptive: X= { 1, 1, 1, 1, 1, …. 1 }

cost = O(m log n)

optimal cost = O(n + m)

3

Alter Tree Shape using Rotations
T0

x1

x1

x1

x1

(2)

We can alter the shape of the tree by rotating an edge

•constant time operation

•preserves symmetric order

•changes the depths of some nodes in the tree

Search Problem using Rotations

OPT (T0, X) = cost of the sequence of rotations and searches which minimize the

total cost

T0

rotations
x2

T1 T2 Tm

x1
x2 xm

rotations rotations
……

x1

xm

Given binary search tree T0 and a sequence of target keys X= { x1, x2, x3, …. xm }

Nodes higher in the tree are cheaper to find

4

Locality of Reference Principle

T0

rotations x1

T1 T2 Tm

xm

x1
x2 xm

rotations rotations
……

x2

x2
x1

x2
xm

x1xm

Target key X of a search is likely to be a target of another search in near future

So move X to the root to make subsequent searches faster

(e.g., LRU, cache, working set)

Splay Tree

No limit on the shape of
the tree

Reshape the tree after
each search to move the
target key to the root

5

Splay Tree

xi

Zig case: odd number of edges on path

final rotation is of edge (xi, root)

Zig-zig case:

Zig-zag case:
xi

xi

xi

xi

Before and After

xi

xi

6

Sequential Access Case

Most extreme initial tree, height = n

sequence of target keys X= { 1, 2, 3, 4, …. n }

32

31

30

5

4

3

2

1

Sequential Access Case

node 1 rotates to the root
using repeated “zig-zigs”

1

7

Sequential Access Case

node 2 rotates to the root
using repeated “zig-zigs”

Sequential Access Case

node 3 rotates to the root using repeated “zig-zigs”

8

Sequential Access Case

Splay trees are “building in balance” automatically

Splay trees match Balanced trees

T0

rotations x1

T1 T2 Tm

xm

x1
x2 xm

rotations rotations
……

x2

x2
x1

x2
xm

x1xm

Claim: Splay trees behave very well over the entire sequence of operations.

Theorem (Sleator and Tarjan, 1985): Given binary search tree T0 and a
sequence of target keys X= { x1, x2, x3, …. xm }, the total cost of performing
these searches is O (m log n)

9

Dynamic Optimality

T0

rotations
x2

T1 T2 Tm

x1
x2 xm

rotations rotations
……

x1

xm

A binary search tree algorithm A is dynamically optimal if for every (T0,X)

costA(T0, X) ≤ c OPT (T0, X)

for some constant c.

Conjecture (Sleator and Tarjan, 1985): Splay trees are dynamically optimal.

Corollaries of Dynamic Optimality

• Static Optimality Theorem (1985): Let qi be the number of
times i is accessed, then the total access time for splay
trees is O (m + ∑ qi log (m/qi))

• Working Set Theorem (1985): Let tj be the number of
distinct items accessed between the last access of i(j), and
the current access, then the total access time for splay trees
is O(n log n + m + ∑ log(tj + 1))

• Dynamic Finger Theorem (2000): the total access time for
splay trees is O(m + ∑ log(| i(j) – i(j+1) | + 1)

10

What Access Sequences are Easy?

• Static Optimality Theorem (1985): Let qi be the number of
times i is accessed, then the total access time for splay
trees is O (m + ∑ qi log (m/qi))

• Working Set Theorem (1985): Let tj be the number of
distinct items accessed between the last access of j, and
the current access, then the total access time for splay trees
is O(n log n + m + ∑ log(tj + 1))

• Dynamic Finger Theorem (2000): the total access time for
splay trees is O(m + ∑ log(| i(j) – i(j+1) | + 1)

• Sequential Access Theorem (1985): The total time for X =
{ 1, 2, 3, … n } is O(n)

Unfolding a Tree into Vine

Any tree can be unfolded into a left vine using at most (n-1) rotations

The left vine tree can be folded into any tree using at most (n-1) rotations

* *

11

Sequential Access is Easy

OPT (T0, X) ≤ (n - 1) + n – 1 = O(n)

when X = { 1, 2, 3, 4, 5, …. n }

T0

n - 1

rotations

T2
T3

……

1 2

32
3

n

1

n

1 2

3

n

1 rotation 1 rotation

T1

Theorem (Tarjan 1985): Given binary search tree T0 the total cost of
performing a sequence of n accesses in sequential order is O (n)

Deque Access

1 234 5 67 8 9

X = { 1, 9, 8, 2, 3, 7, 4, 5, 6 }

Deque (double-ended queue)

Access each element once in an “from the outside in” fashion

1, 2, 3, 4, 5, 6, 7, 8, 9

12

Deque Access is Easy

T0 2n - 2

rotations

……

1

2

7

1

9

9

1 2 28

5
6

4

3

1

2

8

9

8
1

2

8

9

OPT (T0, X) ≤ (2n - 2) + 1 + 2(n-2) = O(n)

Theorem (Sundar 1992): Given binary search tree T0 the total cost of
performing a sequence of n deque-ordered accesses is O (n α (n))

Ackermann’s function:

7

14

128

65432 1n

12108642A1(n)

643216842A2(n)

265,5362^2^2^2
=216

2^2^2
=16

2^2 = 42A3(n)

21642A4(n)
2
2

2…65,536

A1(j) = 2j

Ai+1(j) = Ai Ai Ai Ai (1)

j

….

….

….

….

….

…
.

…
.

…
.

…
.

13

Inverse Ackermann: α(n)

7

14

128

65432 1n

12108642A1(n)

643216842A2(n)

265,5362^2^2^2
=216

2^2^2
=16

2^2 = 42A3(n)

21642A4(n)
2
2

2…65,536

….

….

….

….

….

…
.

…
.

…
.

…
.

Define: α(n) = min { i ≥ 1 : Ai(4) ≥ log(n) }

Iterated Inverse Ackermann: α*(n)

7

14

128

65432 1n

12108642A1(n)

643216842A2(n)

265,5362^2^2^2
=216

2^2^2
=16

2^2 = 42A3(n)

21642A4(n)
2
2

2…65,536

….

….

….

….

….

…
.

…
.

…
.

…
.

Define: α*(n) = min { i ≥ 1 : α α … α α (n) ≤ 2 }

i

14

New Result

T0 2n - 2

rotations

……

1

2

7

1

9

9

1 2 28

5
6

4

3

1

2

8

9

8
1

2

8

9

OPT (T0, X) ≤ (2n - 2) + 1 + 2(n-2) = O(n)

Theorem (Sundar 1992): Given binary search tree T0 the total cost of
performing a sequence of n deque-ordered accesses is O (n α (n))

Theorem (Pettie 2008): Given binary search tree T0 the total cost of
performing a sequence of n deque-ordered accesses is O (n α* (n))

What is the cost of deque-splaying?

WLOG : Splay is “spinal” along the left-path (not necessarily to the root)

15

Sundar: divide-and-conquer

B[x,y]

x

y

Divide the tree into “blocks” of consecutive keys.

Sundar: divide-and-conquer

Each block corresponds to a well-defined sub-tree

16

Sub-problem rotations

Each rotation is either entirely inside a sub-problem,

forming a “deque splaying” operation in that sub-problem

Or cross-block rotations
Or the rotation is “invisible” to every sub-problem

17

Accounting for cross-block rotations

Shrink every sub-problem into a single node, at the common ancestor of all nodes
in that block.

We need to account for the rotations
that are between sub-problems

Global sub-problem

Set the parent of each “block subtree
root” to be the nearest black
ancestor

This creates a well-defined binary
search tree of these “block roots”

18

How does a splay effect global sub-problem?

Each rotation not contained in a sub-problem is
a regular rotation in the global sub-problem

Seth Pettie (2008): α to α *

T0 2n - 2

rotations

……

1

2

7

1

9

9

1 2 28

5
6

4

3

1

2

8

9

8
1

2

8

9

OPT (T0, X) ≤ (2n - 2) + 1 + 2(n-2) = O(n)

Theorem (Sundar 1992): Given binary search tree T0 the total cost of
performing a sequence of n deque-ordered accesses is O (n α (n))

Theorem (Pettie 2008): Given binary search tree T0 the total cost of
performing a sequence of n deque-ordered accesses is O (n α* (n))

NEW TECHNIQUE
using Davenport-

Schinezel sequences

19

Davenport-Schinzel Sequences (1965)

A s-DS sequence is any finite sequence

u = a1 a2 a3 a4 ….. al

over the infinite alphabet A = { 1, 2, 3, 4, …. } such that:

• u has no immediate repetitions

• u does not contain a sub-sequence isomorphic to v = abababa,
(i.e., no alternating sub-sequence of length s)

s

Extremal function λs(n)

λs(n) = max { |u| : u is an (s+2)-DS sequence and ||u|| ≤ n }

What is the longest sequence you can form, using only n symbols, with no
immediate repetitions, and avoiding the sub-sequence aba…..ba?

s+2

20

Extremal function λ2(3)

λ2(3) = max { |u| : u is an 4-DS sequence and ||u|| ≤ 3 }

What is the longest sequence you can form, using only 3 symbols, with no
immediate repetitions, and avoiding the sub-sequence abab?

λ, 1, 12, 121, 1213, 12131, 123, 1231, 1232, 12321

Geometric application

S2

S1

S3

Consider the “lower envelope” of these segments

21

Geometric application

S2

S1

S3

Label each region by the line segment Si that is minimal on that region

1 32 2 3 2 1 3

Geometric application

S2

S1

S3

Sequence: 2, 1, 2, 3, 2, 3, 1, 3 cannot contain subsequence “ababa”

1 32 2 3 2 1 3

22

λ3(n) is complexity of lower envelope

S2

S1

S3

1 32 2 3 2 1 3

λ3(n) = max { |u| : u is a 5-DS sequence and ||u|| ≤ n }

λs(n)

S2

S1

S3

1 32 2 3 2 1 3

λs(n) = complexity when the Si can intersect ≤ (s-2) times

23

λ2(n) is linear

Theorem (Davenport-Schnizel 1965): λ2(n) = 2n - 1
The longest possible sequence using n symbols, with no immediate
repetition and avoiding the sub-sequence abab, has length 2n - 1

λ2(n) ≥ 2n - 1 1, 2, 3, …… n-1, n, n-1, ……. 2, 1

Proof: 2n – 1 ≤ λ2(n) ≤ 2n – 1

Agarwal, Sharir, and Shor (1989)

What is the longest sequence you can form, using only n symbols, with no
immediate repetitions, and avoiding the sub-sequence aba…..ba?

s+2

O(n 2(1+o(1)) α(n))λ6(n)O(n 2(1+o(1)) α(n) /2)

λ5(n)

λ4(n)

λ3(n)

λ2(n)

λ1(n)

O(n α(n) (1+o(1)) α(n))Ω (n 2α(n))

Θ (n 2 α(n))

Θ (n α(n))

2n - 1

n

22

24

Deque Splaying

Theorem (Sundar 1992): Given binary search tree T0 the total cost of
performing a sequence of n deque-ordered accesses is O (n α (n))

Theorem (Pettie 2008): Given binary search tree T0 the total cost of
performing a sequence of n deque-ordered accesses is O (n α* (n))

Proof: Characterize the cost of Deque Splaying as
a Davenport-Schnizel sequence, then cut-and-
paste the results of Agarwal et. al.

If X is a deque-ordered sequence, then

OPT (T0, X) = O(n)

Describe rotations as DS sequence

Non-sub-problem nodes that are
touched by a splay from a node in
sub-problem j are “affiliated” with j

5

4

3

2
1

1

1

1
1

1

Same idea of dividing nodes into
consecutive sub-problems

25

Describe rotations as DS sequence

5

4

3

2
1

1

1

Node receives this label if no ancestor
is in the same block, or has the same
affiliation.

Non-sub-problem nodes that are
touched by a splay from a node in
sub-problem j are “affiliated” with j1

1
1

Describe rotations as DS sequence

5

4

3

2

1

1

2

Non-sub-problem nodes that are
touched by a splay from a node in
sub-problem j are “affiliated” with j1

1
1

22
2

2
2

2

Node receives this label if no ancestor
is in the same block, or has the same
affiliation.

2

26

Describe rotations as DS sequence

5

4

3

Non-sub-problem nodes that are
touched by a splay from a node in
sub-problem j are “affiliated” with j

2

22
2

2
2

2

1

1

1
1

1

3
3

3

3

Sequence: …… 3, 1, 2, …….

Node receives this label if no ancestor
is in the same block, or has the same
affiliation.

Multiple labels on a node are given in
descending order

2

Forbidden sub-sequence babba

b

b
b

a

b

a
a

b,a

a
affiliated with
sub-problem a

Sequence: ………. b …. a ….. b ………. b …….. a …….. …….

Cannot have second
appearance of ‘b’ after the
appearance of an ‘a’

27

Forbidden sub-sequence babba

b

b
b

a

b

a
a

b,a

a

Sequence: ………. b …. a ….. b ………. b …….. a …….. …….

Therefore abababa is also forbidden

So this is a 5-DS sequence, whose length is
bounded by O(n α(n) (1+o(1)) α(n))

Deque Splaying

Theorem (Sundar 1992): Given binary search tree T0 the total cost of
performing a sequence of n deque-ordered accesses is O (n α (n))

Theorem (Pettie 2008): Given binary search tree T0 the total cost of
performing a sequence of n deque-ordered accesses is O (n α* (n))

Proof: Characterize the cost of Deque Splaying as a Davenport-Schnizel
sequence, then cut-and-paste the results of Agarwal et. al.

Improvements? Use generalized DS sequences (with known linear bounds)?

If X is a deque-ordered sequence, then OPT (T0, X) = O(n)

28

Generalized DS Sequences

Ex(v,n) = max { |u| : u does not contain v,

u is ||v|| regular,

and ||u|| ≤ n }

What is the longest sequence you can form, using only n symbols, with no symbol
repetition in any ||v|| substring, and avoiding the sub-sequence v?

Theorem (Klazar, 1995) : Ex(abba, n) = O(n)

Ex(abcdabcd, n) = O(n)

Ex(aabbccaabbcc, n) = O(n)

Open Problem: Ex(abacabc, n) = ??? Linear? Super-linear?

