From O(n $\alpha(n)$) to $\left.\mathbf{O (n} \alpha^{*}(n)\right)$

Recent Results for Splay Trees

Joan M. Lucas
The College at Brockport State University of New York

Western New York Theory Day May 2, 2008

Based on: "Splay Trees, Davenport-Schinzel Sequences, and the Deque Conjecture", Seth Pettie, SODA, January 2008

Binary Search Tree - Search Operation

Search of target key $z \rightarrow$ walk down from the root
Cost of search $=\operatorname{depth}(z)+1$

Search Problem

Given binary search tree T_{0} and a sequence of target keys $X=\left\{x_{1}, x_{2}, x_{3}, \ldots . x_{m}\right\}$

Search for and locate each key at total minimal cost

Balanced Binary Search Trees

height of tree $=O(\log n)$
$\begin{array}{ll}\text { AVL (height balanced) } & \begin{array}{l}\text { Drawbacks: } \\ \\ \\ \text { Red-black }\end{array} \\ & \text { •Not adaptive: } X=\{1,1,1,1,1, \ldots .1\}\end{array}$

$$
\text { cost }=O(m \log n)
$$

$$
\text { optimal cost }=0(n+m)
$$

Alter Tree Shape using Rotations

We can alter the shape of the tree by rotating an edge

```
-constant time operation
```

-preserves symmetric order
-changes the depths of some nodes in the tree

Search Problem using Rotations

Given binary search tree T_{0} and a sequence of target keys $X=\left\{x_{1}, x_{2}, x_{3}, \ldots . x_{m}\right\}$

OPT $\left(T_{0}, X\right)=$ cost of the sequence of rotations and searches which minimize the total cost

Nodes higher in the tree are cheaper to find

Locality of Reference Principle

Target key \mathbf{X} of a search is likely to be a target of another search in near future

So move \mathbf{X} to the root to make subsequent searches faster
(e.g., LRU, cache, working set)

Splay Tree

No limit on the shape of the tree

Reshape the tree after each search to move the target key to the root

Splay Tree

Zig case: odd number of edges on path final rotation is of edge (x_{i}, root $)$

Zig-zig case:

Zig-zag case:

Before and After

Sequential Access Case

Most extreme initial tree, height $=\mathrm{n}$
sequence of target keys $X=\{1,2,3,4, \ldots . n\}$

Sequential Access Case

node 1 rotates to the root using repeated "zig-zigs"

Sequential Access Case

node 2 rotates to the root
using repeated "zig-zigs"

Sequential Access Case

node 3 rotates to the root using repeated "zig-zigs"

Sequential Access Case

Splay trees are "building in balance" automatically

Splay trees match Balanced trees

"•"•"•

Claim: Splay trees behave very well over the entire sequence of operations.

Theorem (Sleator and Tarjan, 1985): Given binary search tree T_{0} and a sequence of target keys $X=\left\{x_{1}, x_{2}, x_{3}, \ldots x_{m}\right\}$, the total cost of performing these searches is $\mathbf{O}(\mathbf{m} \boldsymbol{\operatorname { l o g }} \mathbf{n})$

Dynamic Optimality

A binary search tree algorithm \mathbf{A} is dynamically optimal if for every $\left(T_{0}, X\right)$

$$
\operatorname{cost}_{A}\left(T_{0}, X\right) \leq \operatorname{coPT}\left(T_{0}, X\right)
$$

for some constant c .

Conjecture (Sleator and Tarjan, 1985): Splay trees are dynamically optimal.

Corollaries of Dynamic Optimality

- Static Optimality Theorem (1985): Let q_{i} be the number of times i is accessed, then the total access time for splay trees is $O\left(m+\sum q_{i} \log \left(m / q_{i}\right)\right)$
- Working Set Theorem (1985): Let t_{j} be the number of distinct items accessed between the last access of $i(j)$, and the current access, then the total access time for splay trees is $O\left(n \log n+m+\sum \log \left(t_{j}+1\right)\right)$
- Dynamic Finger Theorem (2000): the total access time for splay trees is $\mathrm{O}\left(m+\sum \log (|i(j)-i(j+1)|+1)\right.$

What Access Sequences are Easy?

- Static Optimality Theorem (1985): Let q_{i} be the number of times i is accessed, then the total access time for splay trees is $\mathrm{O}\left(m+\sum \mathrm{q} \cdot \log \left(\mathrm{m} / \mathrm{q}_{\mathrm{i}}\right)\right)$
- Working Set Theorem (1985): Let t_{j} be the number of distinct items accessed between the last access of j, and the current access, then the total access time for splay trees is $\left.O\left(n \log n+m+\quad \log \left(t_{2}\right)+1\right)\right)$
- Dynamic Finger Theorem (2000): the total access time for splay trees is $\mathrm{O}\left(m+\sum \log (\mathrm{D}) \mathrm{i}(\mathrm{j})-\mathrm{i}(\mathrm{j}+1) \mid+1\right)$
- Sequential Access Theorem (1985): The total time for $X=$ $\{1,2,3, \ldots n\}$ is $(\mathrm{O}(\mathrm{n})$)

Unfolding a Tree into Vine

Any tree can be unfolded into a left vine using at most ($\mathrm{n}-1$) rotations

The left vine tree can be folded into any tree using at most ($\mathrm{n}-1$) rotations

Sequential Access is Easy

OPT $\left(T_{0}, X\right) \leq(n-1)+n-1=O(n)$
when $X=\{1,2,3,4,5, \ldots . n\}$

Theorem (Tarjan 1985): Given binary search tree T_{0} the total cost of performing a sequence of n accesses in sequential order is $\mathbf{O (n)}$

Deque Access

Deque (double-ended queue)

Access each element once in an "from the outside in" fashion

$X=\{1,9,8,2,3,7,4,5,6\}$

Deque Access is Easy

OPT $\left(T_{0}, X\right) \leq(2 n-2)+1+2(n-2)=O(n)$

Theorem (Sundar 1992): Given binary search tree T_{0} the total cost of performing a sequence of n deque-ordered accesses is $\mathbf{O}(\mathbf{n a (n)})$

Ackermann's function:

$$
A_{1}(j)=2 j
$$

Ackermann's function:$A_{i+1}(j)=\overbrace{A_{i} A_{i} A_{i} A_{i}(1)}^{j}$							
$\mathrm{A}_{4}(\mathrm{n})$	2	4	$2^{16} \quad 65$	$336\left\{2^{2^{2}}\right.$			
$\mathrm{A}_{3}(\mathrm{n})$	2	$2^{\wedge} 2=4$	$\begin{gathered} 2^{\wedge} 2^{\wedge} 2 \\ =16 \end{gathered}$	$\begin{gathered} 2^{\wedge} 2^{\wedge} 2^{\wedge} 2 \\ =2^{16} \end{gathered}$	$2^{65,536}$		
$\mathrm{A}_{2}(\mathrm{n})$	2	4	8	16	32	64	128
$\mathrm{A}_{1}(\mathrm{n})$	2	4	6	8	10	12	14
n	1	2	3	4	5	6	7

Inverse Ackermann: $\alpha(n)$							
$\mathrm{A}_{4}(\mathrm{n})$	2	4	$2^{16} 65$	S66 $\left\{2^{2^{\cdots{ }^{2}}}\right.$			'. ${ }^{\text {- }}$
$\mathrm{A}_{3}(\mathrm{n})$	2	$2^{\wedge} 2=4$	$\begin{gathered} 2^{\wedge} 2^{\wedge} 2 \\ =16 \end{gathered}$	$\begin{gathered} 2^{\wedge} 2^{\wedge} 2^{\wedge} 2 \\ =2^{16} \end{gathered}$	$2^{65,536}$		'.
$\mathrm{A}_{2}(\mathrm{n})$	2	4	8	16	32	64	$128 .$.
$\mathrm{A}_{1}(\mathrm{n})$	2	4	6	8	10	12	14.
n	1	2	3	4	5	6	7 ..
Define: $a(n)=\min \left\{i \geq 1: A_{i}(4) \geq \log (\mathrm{n})\right.$ \}							

Iterated Inverse Ackermann: $\mathrm{a}^{*}(\mathrm{n})$							
$\mathrm{A}_{4}(\mathrm{n})$	2	4	$2^{16}{ }_{65}$	S66 $\left\{2^{2^{\cdots{ }^{2}}}\right.$			$\cdots \cdot$
$\mathrm{A}_{3}(\mathrm{n})$	2	$2^{\wedge} 2=4$	$\begin{gathered} 2^{\wedge} 2^{\wedge} 2 \\ =16 \end{gathered}$	$\begin{gathered} 2^{\wedge} 2^{\wedge} 2^{\wedge} 2 \\ =2^{16} \end{gathered}$	$2^{65,536}$		'"
$\mathrm{A}_{2}(\mathrm{n})$	2	4	8	16	32	64	128 ..
$\mathrm{A}_{1}(\mathrm{n})$	2	4	6	8	10	12	$14 .$.
n	1	2		4	5	6	7 ...

New Result

OPT $\left(T_{0}, X\right) \leq(2 n-2)+1+2(n-2)=O(n)$

Theorem (Sundar 1992): Given binary search tree T_{0} the total cost of performing a sequence of n deque-ordered accesses is $\mathbf{O}(\mathbf{n} \mathbf{a}(\mathbf{n}))$

Theorem (Pettie 2008): Given binary search tree T_{0} the total cost of performing a sequence of n deque-ordered accesses is $\mathbf{O}\left(\mathbf{n} \mathbf{a}^{*}(\mathbf{n})\right.$)

What is the cost of deque-splaying?

WLOG : Splay is "spinal" along the left-path (not necessarily to the root)

Sundar: divide-and-conquer

Sundar: divide-and-conquer

Each block corresponds to a well-defined sub-tree

Sub-problem rotations

Each rotation is either entirely inside a sub-problem, forming a "deque splaying" operation in that sub-problem

Or cross-block rotations

Accounting for cross-block rotations

We need to account for the rotations that are between sub-problems

Shrink every sub-problem into a single node, at the common ancestor of all nodes in that block.

Global sub-problem

Set the parent of each "block subtree root" to be the nearest black ancestor

This creates a well-defined binary search tree of these "block roots"

How does a splay effect global sub-problem?

Seth Pettie (2008): α to α *

NEW TECHNIQUE using Davenport-
OPT $\left(\mathrm{T}_{0}, \mathrm{X}\right) \leq(2 \mathrm{n}-2)+1+2(\mathrm{n}-2)=\mathrm{O}(\mathrm{n})$
Schinezel sequences

Theorem (Sundar 1992): Given binary search tree T_{0} the total cost of performing a sequence of n deque-ordered accesses is $\mathbf{O}(\mathbf{n a (n)})$

Theorem (Pettie 2008): Given binary search tree T_{0} the total cost of performing a sequence of n deque-ordered accesses is $\mathbf{O}\left(\mathbf{n} \mathbf{a}^{*}(\mathbf{n})\right)$

Davenport-Schinzel Sequences (1965)

A s-DS sequence is any finite sequence

$$
\mathrm{u}=\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} \mathrm{a}_{4} \ldots . . \mathrm{a}_{1}
$$

over the infinite alphabet $A=\{1,2,3,4, \ldots$.$\} such that:$

- u has no immediate repetitions

- u does not contain a sub-sequence isomorphic to $v=$ abababa, (i.e., no alternating sub-sequence of length s)

Extremal function $\lambda_{s}(n)$

$$
\lambda_{\mathrm{s}}(\mathrm{n})=\max \{|\mathrm{u}|: \mathrm{u} \text { is an }(\mathrm{s}+2) \text {-DS sequence and }\|\mathrm{u}\| \leq \mathrm{n}\}
$$

What is the longest sequence you can form, using only n symbols, with no immediate repetitions, and avoiding the sub-sequence aba.....ba?

$\mathrm{s}+2$

Extremal function $\lambda_{2}(3)$

$\lambda_{2}(3)=\max \{|\mathrm{u}|: \mathrm{u}$ is an 4-DS sequence and $\| \mathrm{u}| | \leq 3\}$

What is the longest sequence you can form, using only 3 symbols, with no immediate repetitions, and avoiding the sub-sequence abab?

$\lambda, 1,12,121,1213,12131,123,1231,1232,12321$

Geometric application

Consider the "lower envelope" of these segments

Geometric application

Label each region by the line segment S_{i} that is minimal on that region

Geometric application

Sequence: 2, 1, 2, 3, 2, 3, 1, 3 cannot contain subsequence "ababa"

$\lambda_{3}(n)$ is complexity of lower envelope

$\lambda_{3}(n)=\max \{|u|: u$ is a $5-D S$ sequence and $\|u\| \leq n\}$
$\lambda_{s}(n)$

$\lambda_{s}(n)=$ complexity when the S_{i} can intersect $\leq(s-2)$ times

$\lambda_{2}(n)$ is linear

Theorem (Davenport-Schnizel 1965): $\lambda_{2}(n)=2 n-1$
The longest possible sequence using n symbols, with no immediate repetition and avoiding the sub-sequence abab, has length $2 n-1$

Proof: $2 n-1 \leq \lambda_{2}(n) \leq 2 n-1$
$\lambda_{2}(n) \geq 2 n-1 \quad \rightarrow \quad 1,2,3, \ldots \ldots . n-1, n, n-1, \ldots \ldots . .2,1$

Agarwal, Sharir, and Shor (1989)

What is the longest sequence you can form, using only n symbols, with no immediate repetitions, and avoiding the sub-sequence aba.....ba?

	$\lambda_{1}(\mathrm{n})$	n
	$\lambda_{2}(\mathrm{n})$	2n-1
	$\lambda_{3}(\mathrm{n})$	$\Theta(\mathrm{n} \alpha \mathrm{n})$)
	$\lambda_{4}(\mathrm{n})$	$\Theta\left(\mathrm{n} 2{ }^{(0)}\right)$
$\Omega\left(\mathrm{n} 2^{\text {a }}\right.$ ($) ~(~) ~$	$\lambda_{5}(\mathrm{n})$	$\mathrm{O}\left(\mathrm{n} \alpha(\mathrm{n})^{(1+o(1)) \alpha(\mathrm{n})}\right)$
$\mathrm{O}\left(\mathrm{n} 2^{(1+o(1)) a(n)^{2} / 2}\right)$	$\lambda_{6}(\mathrm{n})$	$\mathrm{O}\left(\mathrm{n} 2^{\left.(1+o(1)) \mathrm{a}(\mathrm{n})^{2}\right)}\right.$

Deque Splaying

If X is a deque-ordered sequence, then

$$
\mathrm{OPT}\left(\mathrm{~T}_{0}, \mathrm{X}\right)=\mathrm{O}(\mathrm{n})
$$

Theorem (Sundar 1992): Given binary search tree T_{0} the total cost of performing a sequence of n deque-ordered accesses is $\mathbf{O}(\mathbf{n} \mathbf{a}(\mathbf{n})$)

Theorem (Pettie 2008): Given binary search tree T_{0} the total cost of performing a sequence of n deque-ordered accesses is $\mathbf{O}\left(\mathbf{n} \mathbf{a}^{*}(\mathbf{n})\right)$

Proof: Characterize the cost of Deque Splaying as a Davenport-Schnizel sequence, then cut-andpaste the results of Agarwal et. al.

Describe rotations as DS sequence

Same idea of dividing nodes into consecutive sub-problems

Non-sub-problem nodes that are touched by a splay from a node in sub-problem j are "affiliated" with j

Describe rotations as DS sequence

Non-sub-problem nodes that are touched by a splay from a node in sub-problem j are "affiliated" with j

Node receives this label if no ancestor is in the same block, or has the same affiliation.

Describe rotations as DS sequence

Non-sub-problem nodes that are touched by a splay from a node in sub-problem j are "affiliated" with j

Node receives this label if no ancestor is in the same block, or has the same affiliation.

Describe rotations as DS sequence

Non-sub-problem nodes that are touched by a splay from a node in sub-problem j are "affiliated" with j

Node receives this label if no ancestor is in the same block, or has the same affiliation.

Multiple labels on a node are given in descending order
\qquad $3,1,2, \ldots \ldots$

Forbidden sub-sequence babba

Cannot have second appearance of ' b ' after the appearance of an 'a'
\qquad b a b \qquad b \qquad a \qquad

Forbidden sub-sequence babba

Deque Splaying

If X is a deque-ordered sequence, then OPT $\left(T_{0}, X\right)=O(n)$

Theorem (Sundar 1992): Given binary search tree T_{0} the total-cost of performing a sequence of n deque-ordered accesses is (\mathbf{n} a (n))

Theorem (Pettie 2008): Given binary search tree T_{0} the total coct of performing a sequence of n deque-ordered accesses is ($\mathbf{n} \mathbf{a}^{*}(\mathbf{n})$)

Proof: Characterize the cost of Deque Splaying as a Davenport-Schnizel sequence, then cut-and-paste the results of Agarwal et. al.

Improvements? Use generalized DS sequences (with known linear bounds)?

Generalized DS Sequences

$E x(v, n)=\max \{|u|: u$ does not contain v,

$$
\begin{aligned}
& \mathrm{u} \text { is }\|\mathrm{v}\| \text { regular, } \\
& \text { and }\|\mathrm{u}\| \leq \mathrm{n}\}
\end{aligned}
$$

What is the longest sequence you can form, using only n symbols, with no symbol repetition in any \|v\| substring, and avoiding the sub-sequence v ?

Theorem (Klazar, 1995) : Ex(abba, n) $=O(n)$
Ex(abcdabcd, n) $=O(n)$
$E x(a a b b c c a a b b c c, n)=O(n)$

Open Problem: \quad Ex $(a b a c a b c, n)=$??? Linear? Super-linear?

