

					$A_{i+1}(j) = A_i A_i A_i A_i (1)$			
	1				/ ` i+1U/ [_]		, Yi (')	
A ₄ (n)	2	4	2 ¹⁶ 65,5	36-{2 ²				
A ₃ (n)	2	2^2 = 4	2^2^2 =16	2^2^2^2 =2 ¹⁶	2 ^{65,536}			
A ₂ (n)	2	4	8	16	32	64	128	
A ₁ (n)	2	4	6	8	10	12	14	
n	1	2	3	4	5	6	7	

Inverse Ackermann: α(n)							
_	:	ł	ł				
A ₄ (n)	2	4	2 ¹⁶ 65,5	² ² ² ²			
A ₃ (n)	2	2^2 = 4	2^2^2 =16	2^2^2^2 =2 ¹⁶	2 ^{65,536}		
A ₂ (n)	2	4	8	16	32	64	128
A ₁ (n)	2	4	6	8	10	12	14
n	1	2	3	4	5	6	7
Define: $a(n) = \min \{ i \ge 1 : A_i(4) \ge log(n) \}$							

Agarwal, Sharir, and Shor (1989)					
What is the longest sequence you can form, using only n symbols, with no immediate repetitions, and avoiding the sub-sequence ababa?					
	$\lambda_1(n)$	n			
	$\lambda_2(n)$	2n - 1			
	λ ₃ (n)	Θ (n α(n))			
	$\lambda_4(n)$	Θ (n 2 ^{α(n)})			
Ω (n 2 ^{α(n)})	λ ₅ (n)	O(n α(n) ^{(1+o(1)) α(n)})			
O(n $2^{(1+o(1))\alpha(n)^2/2}$)	λ ₆ (n)	O(n 2 ^{(1+o(1)) α(n)}) ²			

