
Midterm Exam

CSC 173

23 October 2001

Directions

This exam has 8 questions, several of which have subparts. Each question indicates its point
value. The total is 100 points. Questions 5(b) and 6(c) are optional; they are not part of
the 100 points, but will count for extra credit at the end of the semester.

Please show your work here on the exam, in the space given. You shouldn’t
need to write on the backs or in the margins; if your answer won’t fit in the space given then
you’re trying to write too much. Put your name on every page. Scrap paper is available if
you need it, but the proctor will collect only the exams.

I have tried to make the questions as clear and self-explanatory as possible. If you do
not understand what a question is asking, make some reasonable assumption and write that
assumption down next to your answer. The proctor has been instructed not to try to answer
any questions during the exam.

You will have the entire class period to work. Good luck!

1. (9 points). Name and briefly describe (one sentence each) three different data structures
that could be used to implement (in three different ways) a relation abstraction.

array – Each tuple goes in a separate, arbitrary slot of the array.

linked list – Tuples are dynamically allocated and linked to one another with pointers
or references.

hash table – Tuples occupy buckets of a lookup table indexed by some primary key.

balanced tree – Tuples are dynamically allocated and organized into a binary (or
n-array) hierarchy.

characteristic array – Tuples go into slots of the array indicated by values of some
primary key, which must form a dense, ordered, finite set.

1



2. Consider the following relation R:

A B C D
red 10 large x
blue 12 large y
green 6 small z
red 9 small w
yellow 20 small z

(a) (7 points). Judging from the tuples shown, which attributes or sets of attributes
might be keys for R? How can you tell?

B, AC, AD are the minimal sets of columns that have unique values for all tuples.
They could be keys, or we might need additional columns, to make sure that we will
never see any tuples with identical “key” values. Without semantic information
(what do the columns mean), all we can really be sure of is that A, C, D, and CD
are not keys.

(b) (5 points). Give the result of the operation σD=z∨B<10(R).

A B C D
green 6 small z
red 9 small w
yellow 20 small z

(c) (5 points). Give the result of the operation πC,D(R).

C D
large x
large y
small z
small w

3. (9 points). What does the following program print? Explain.

#include <stdio.h>

int main ()

{

char *s = "string 1";

char *t = "string 2";

if (s == t) printf("yes\n"); else printf("no\n");

if (*s == *t) printf("yes\n"); else printf("no\n");

}

It prints

no

yes

2



Variables s and t are pointers to strings (arrays of characters). The first if statement
checks to see whether s and t have the same value as pointers—whether they point to
the same location in memory. They do not. The second if statement checks to see
whether the characters pointed at by s and t—the first characters of the two strings—
are the same. They are (they’re both s’s). If we really wanted to compare the content
of the strings, we’d need to write a loop or use the strcmp library function:

if (!strcmp(s, t)) printf("yes\n"); else printf("no\n");

4. We discussed three possible implementations of the join operation: a nested loop join,
which iterates over all pairs of tuples, a sort join, which sorts all tuples (of both
relations) by the join attribute prior to finding matching pairs, and an index join,
which iterates over the tuples of one relation and performs lookup operations on the
other relation.

Suppose that we are performing a join on relations R1 and R2 to produce relation R3.
Suppose further that relation R1 has N1 tuples, relation R2 has N2 tuples, and relation
R3 has N3 tuples.

(a) (6 points). Give the asymptotic complexity (Big-O running time) of the three
join implementations, in terms of N1, N2, and N3.

nested loop: O(N1 × N2).

sort: O(N1 log N1+N2 log N2+N3) or O((N1+N2) log(N1+N2)+N3), depending
on details of the implementation.

index: O(N1 +N3) or O(N2 +N3), depending on whether you use the R2 index or
the R1 index, respectively, and assuming a hash table index. With a balanced
tree index, it’s O(N1 log N2 + N3) or O(N2 log N1 + N3).

(b) (5 points). Can you think of a situation in which a sort join would be preferred
over an index join?

If you’re joining on an attribute for which you don’t have an index for either
relation, and don’t want to create one. Alternatively, if R1 and R2 are known to
be sorted on the join attribute already, or R3 needs to be. This latter case (known
to be sorted already) might hold if your indices were balanced trees indexed by the
join attribute: exploiting the already-sorted nature of the tree could be faster than
repeatedly traversing it down from the root.

(c) (5 points). Can you think of a situation in which a nested loop join would be
preferred over a sort join?

If one of the relations is much smaller than the other, so N1 < log N2 or N2 <
log N1, and thus N1 × N2 < N1 log N1 + N2 log N2. Alternatively, if most of the
tuples in both relations have the same value for the attribute on which you’re
performing the join, so N3 ≈ N1 × N2. Note, though, that you’re unlikely to be
able to predict this in advance. NB: I gave partial credit for “if both relations are
really small”. Here the nested loop is faster, but only by a small constant factor.

3



5. Consider the language consisting of all strings of a’s, b’s, and c’s, with no two identical
consecutive letters.

(a) (7 points). Give a DFA that accepts this language.

b b

b a
a

aa

c

c

c c
b

(b) (EXTRA CREDIT, up to 8 points). Give a regular expression that describes
this language. Hint: this is hard. Start by creating a regular expression R that
describes strings of alternating a’s and b’s. Then create a regular expression that
describes strings of alternating R’s and c’s.

Let R = b (ab)* (a ε) a (ba)* (b ε) Our answer is then (R ε) (cR)* (c ε) =
((b (ab)* (a ε) a (ba)* (b ε)) ε) (c (b (ab)* (a ε) a (ba)* (b ε)))* (c ε).
Note that R must generate non-empty strings, but our answer must include the
empty string.

6. Consider the following NFA:

ε

ε

b

b b

b

b

a

a a a

a

(a) (7 points). Describe in English the language accepted by this NFA. Note: you
will not receive full credit just for describing how the NFA works: “zero or more
b’s followed by . . . or zero or more a’s followed by . . . ” isn’t acceptable.

All strings of a’s and b’s in which either the number of a’s is evenly divisible by
2 or the number of b’s is evenly divisible by 3.

4



(b) (7 points). Give a regular expression that describes the same language.

b*(ab*a)*b* a*(ba*ba*b)*a*

(c) (EXTRA CREDIT, up to 8 points). Give a DFA that accepts the same language.

b b

b
a a a a a a

b

b

b

7. (8 points). When performing the subset construction to turn an NFA into an equivalent
DFA, we need to adopt the convention that the NFA accepts only if it can end up in
an accepting state after consuming its entire input. Why? What would be wrong with
a convention that says you accept if you can “get stuck” (no outgoing transition) in
an accepting state, even if there is some input remaining?

Suppose there are two NFA states A and B that can be reached on the same input string
(prefix) w. Suppose A is accepting and has no outgoing edges, but B is non-accepting
and has a transition on symbol a to a non-accepting state C. A subset state containing
A and B will be accepting (because A is), and will have an outgoing edge on a. So the
NFA will accept when given input wa, but the DFA (subset machine) will not.

8. Short answer.

(a) (5 points). A database representing academic information at the University might
have relations with the following schemes:

student id, student name, student address
student id, course number, semester, grade
course number, course name, department, credits

In principle we could store the same information in a relation whose scheme
consists of the nine distinct attributes from the list above. Why don’t we do this?

Because it would introduce a huge amount of redundant information, wasting space
and introducing the need to guard against inconsistencies in copies.

(b) (5 points). The search (find) mechanism in many text editors allows the user
to describe the target of the search with a regular expression, not just a specific
string. The editor converts the regular expression to an NFA in order to drive the
search. In many cases, the editor then emulates the NFA directly (keeping track
of all possible current states), rather than converting the NFA to a DFA. Why do
you suppose it does this? Why not create the DFA?

5



Because the conversion to a DFA takes time and potentially a lot of space. Since
we’re only going to use the machine once the cost of NFA emulation may be less
than the cost of the conversion. The scanner in a compiler, by contrast, is run
many, many times, and needs to be really fast; it definitely warrants conversion
to deterministic form.

(c) (5 points). The Unix make utility is designed to manage collections of files that
depend on one another. Programmers who build large systems typically arrange
for make to call the compiler (e.g. gcc), rather than calling it themselves. Why?
Why not just create a one-line shell command or alias that invokes gcc with the
right arguments, and passes it all the source files?

Because typically when you make a change to a source file in a large system, only
a small subset of the files really need to be recompiled. By using make you can
arrange to recompile all and only those files, avoiding the time required to compile
the others.

(d) (5 points). Summarize informally the general rule that determines whether it is
profitable to push a project operation inside a join.

It’s profitable if projecting before the join would significantly reduce the amount
of data (columns and maybe rows) that must be processed by the join, but not
if it forces us to look at tuples that we would otherwise have been able to avoid
inspecting, by performing an index join.

6


