

- Propositional logic mathematical model (or algebra) for reasoning about the truth of logical expressions (propositions)
- Logical expressions propositional variables or logical expressions connected with logical operators (not, and, or)
- Uses
 - design of digital circuits
 - Composition of logical expressions in programs
 - Automatic reasoning systems
 - Model of computation (programming language Prolog)

Logical Expressions

- Propositional variables (whose value is TRUE or FALSE) and the propositional constants TRUE and FALSE are logical expressions
- If LE1 and LE2 are logical expressions, then LE1 AND LE2 is a logical expression, whose value is TRUE if both LE1 and LE2 have the value TRUE, and is FALSE otherwise
- If LE1 and LE2 are logical expressions, then LE1 OR LE2 is a logical expression, whose value is TRUE if either LE1 or LE2 have the value TRUE, and is FALSE otherwise
- If LE1 is a logical expression, then NOT LE1 is a logical expression, whose value is TRUE if LE1 has the value FALSE, and is FALSE otherwise

Algebraic Laws for Logical Expressions

- AND and OR are commutative
- AND and OR are associative
- AND is distributive over OR; OR is distributive over AND
- TRUE is the identity for AND; FALSE is the identity for OR
- FALSE annihilates AND; TRUE annihilates OR
- AND and OR are idempotent (p AND $p \equiv p \text{ OR } p \equiv p$)
- Subsumption
- $(p \text{ OR } (p \text{ AND } q)) \equiv (p \text{ AND } (p \text{ OR } q)) \equiv p$
- DeMorgan's Laws:
- NOT(p AND q) ≡ (NOT p) OR (NOT q) - NOT(p OR q) ≡ (NOT p) AND (NOT q)

Logic Minimization

Essence of simplification

- Repeatedly find two-element sub-sets of true values in which only one variable changes its value while the other variables do not
- Apply the Unifying Theorem to eliminate the single varying variable –
 - FUNC = A.B + A.B
 - FUNC = A. (B+B) apply the Distributive law of Boolean Algebra
 - F = A apply the Inverse law of Boolean Algebra

CNF and DNF

- Disjunctive normal form (DNF) sum of products
- Conjunctive normal form (CNF) product of sums
- Construct logical expressions from truth tables using either DNF or CNF

Karnaugh Maps

- A graphical representation of the truth table boolean cube in n-dimensional space where n is the number of input variables
- Entry for each combination of input variables specifying the value of the output function
- Uses Gray code encoding advancing from 1 index to the next changes the value of only a single input variable/bit
- Multi-dimensional table with logical adjacency along a dimension And two adjacent elements (horizontal or vertical) are distance one apart
 - Adjacencies provide clues about whether uniting theorem can be applied
- Goal: fina minimum cover of the 1'a using rectangles or squares containing a power of 2 number of 1's
- In essence, a mechanical method to find the don't cares in the truth

Completeness of NAND

- $p AND q \equiv ((p NAND q) NAND TRUE)$
- $p \text{ OR } q \equiv ((p \text{ NAND TRUE}) \text{ NAND } (q$ NAND TRUE)) \equiv (NOT p) NAND (NOT q)
- (NOT p) \equiv (p NAND TRUE) \equiv (p NAND p)

- Laws of implication
- Reasoning with Propositional logic - Deductive proofs
 - Take as given a set of premises (or hypotheses) that are known to be try and attempt to prove a conclusion valid by a sequence of steps, termed inferences
 - · Each inference follows from the premises or a previous inference by application of an inference rule

Laws of Implication

- $p \rightarrow q \equiv NOT p OR q$
- $(p \rightarrow q) \text{ AND } (q \rightarrow p) \equiv (p \equiv q)$
- $(p \equiv q) \rightarrow (p \rightarrow q)$
- (p1 AND p2 AND ...pn \rightarrow q) = (NOT p1 OR NOT p2 OR ... NOT pn OR q)
- $(p \rightarrow q) \rightarrow (NOT q \rightarrow NOT p)$ (contrapositive law)
- $((p \rightarrow q) \text{ AND } (\text{NOT } p \rightarrow q)) \equiv q$

Reasoning with Propositional Logic

- · Given premises (or inferences) P1...Pn, we can infer expression E if P1 AND P2 AND ... Pn \rightarrow E is a tautology
 - Whenever E is a tautology, P1 AND P2 AND ...Pn → E is a tautology
 - Given two premises P1 and P1, we can infer P1 AND P2
 - If P1 and (P1 →P2) are given or inferred, then we can infer P2 by the rule of "modus ponens" ((p AND (p →q)) → q)

 - If NOT P2 and (P1 \rightarrow P2) are given or inferred, then we can infer NOT P1 by the rule of "modus tollens" - If P1 and (P1 ≡ P2) are given or inferred, we can infer P2
- Techniques
 - Prove tautologies using inference
 - Deductive proof

Proof with Resolution

- Resolution tautology If we know p OR q and p \rightarrow r then we can deduce q OR r
 - (p OR q) AND (NOT p OR $\dot{r} \rightarrow q$ OR r
- In order to apply resolution in a proof:
 - Express hypotheses and conclusion as a product of sums (conjunctive normal form), such as those that appear above
 - Each maxterm in the CNF of the hypothesis becomes a clause of the proof
 - Apply the resolution tautology to pairs of clauses, producing new clauses
 - Prove by producing all clauses of the conclusion OR prove by contradiction using resolution

Combinational & Sequential Circuits · Combinational: - Output is a Boolean function of input values. - Are Acyclic: • No cycles between inputs of a gate and its outputs. - No memory: · Cannot remember previous inputs or outputs. - Example of use: • Decode instructions and perform arithmetic.

- Use them as inputs.
- Example of use:
 - · Build registers and memory units.

Constraints on Circuit Design Numerous constraints impact: The speed and cost of a circuit. Speed: Every gate in a circuit introduces a small delay. Circuit delay depends on the number of gates between inputs and outputs

- Depends on fan-in and fan-out of a gate

Constraints on Circuit Design

- · Size limitations:
 - More gates lead to larger circuits.
 - Large circuits are more expensive
 - Higher failure rate.
 - And slower.
 - Signals must propagate from one end to the other.
- Fan-in and Fan-out:
 - Number of inputs and outputs of a gate.
 - Large fan-in makes a gate slower.

Divide and Conquer Adder

- Already seen *Ripple-Carry* adder
- Need:
 - Adder with a smaller delay for larger words.
- Solution:
 - Use a divide and conquer strategy.
 - Use two N/2-bit adders and combine results.
 - Left and right halves added in parallel.

Design of an N-adder Assume two N-bit operands: x₁...x_N & y₁...y_N.

- Design N-adder that computes:
 - Sum without carry-in: s₁...s_N.
 - Sum with carry-in: t₁...t_N.
 - The carry-propagate bit, p:
 - It is 1 if there is a carry-out assuming there is carry-in.
 - The carry-generate bit, g:
 - It is 1 if there is a carry-out even if there is NO carry-in.
 - NOTE: if g is one then p will be one too (g implies p).
- First, build an 1-bit adder.

- \mathbf{t}_{H} if there is carry from low order part (\mathbf{g}_{L}).
- High order sum, with carry-in:
 - $t_2 = s_H \overline{p}_L + t_H p_L$
 - $t_{\rm H}$ if there is a carry from the low order part.
 - s_H otherwise.

Sequential Circuits for Memory Elements.

- Memory element:
 - A collection of gates capable of producing its last input as output.
 - They are sequential circuits.
 - Their behavior depends on current and past inputs.
- Flip-flop:
 - A 1-bit memory element.
 - Typical flip-flop:
 - Takes two inputs (load and data-in).
 - Produces one output (data-out).

Flip-Flops

- Load==0:
 - The circuit produces the stored value as output.
- Load==1:
 - The circuit stores the value data-in and
 - Produces it as output.

