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Abstract—Action recognition with 3D skeleton sequences is
becoming popular due to its speed and robustness. The recently
proposed Convolutional Neural Networks (CNN) based methods
have shown good performance in learning spatio-temporal rep-
resentations for skeleton sequences. Despite the good recognition
accuracy achieved by previous CNN based methods, there exist
two problems that potentially limit the performance. First, previ-
ous skeleton representations are generated by chaining joints with
a fixed order. The corresponding semantic meaning is unclear
and the structural information among the joints is lost. Second,
previous models do not have an ability to focus on informative
joints. The attention mechanism is important for skeleton based
action recognition because there exist spatio-temporal key stages
and the joint predictions can be inaccurate. To solve the two
problems, we propose a novel CNN based method for skeleton
based action recognition. We first redesign the skeleton represen-
tations with a depth-first tree traversal order, which enhances
the semantic meaning of skeleton images and better preserves
the structural information. We then propose the idea of a two-
branch attention architecture that focuses on spatio-temporal
key stages and filters out unreliable joint predictions. A base
attention model with the simplest structure is first introduced
to illustrate the two-branch attention architecture. By improving
the structures in both branches, we further propose a Global
Long-sequence Attention Network (GLAN). Experiment results
on the NTU RGB+D dataset and the SBU Kinetic Interaction
dataset show that our proposed approach outperforms the state-
of-the-art, as well as the effectiveness of each component.

I. INTRODUCTION

The frequently used modalities for action recognition in-
clude RGB videos [1], [2], [3], optic flow [4], [5], [6] and
skeleton sequences. Comparing to RGB videos and optic flow,
skeleton sequences require less computation. Furthermore,
skeleton sequences have a better ability to represent dataset-
invariant action information since no background information
is included. One limitation is that labeling skeleton sequences
manually is too expensive, while the automatic annotation
methods may yield inaccurate predictions. With the above
advantages and the fact that skeletons can now be more
reliably predicted [7], [8], skeleton based human action recog-
nition is becoming increasingly popular. The major goal for
skeleton based recognition is to learn a representation that best
preserves the spatio-temporal relations among the joints.

With a strong ability in modeling sequential data, Recur-
rent Neural Networks (RNN) with Long Short-Term Memory
(LSTM) neurons outperform the previous hand-crafted feature
based methods [9], [10]. Each skeleton frame is converted
into a feature vector and the whole sequence is fed into
the RNN. Despite the strong ability in modeling temporal

sequences, RNN structures lack the ability to efficiently learn
the spatial relations between the joints. To better use spatial
information, a hierarchical structure is proposed in [11], [12]
that feds the joints into the network as several pre-defined body
part groups. However, the pre-defined body regions still limit
the effectiveness of representing spatial relations. A spatio-
temporal 2D LSTM (ST-LSTM) network [13] is proposed
to learn the spatial and temporal relations simultaneously.
Furthermore, a two-stream RNN structure [14] is proposed to
learn the spatio-temporal relations with two RNN branches.

CNN has a natural ability to learn representations from
2D arrays. [15], [16] first propose to represent the skeleton
sequences as 2D gray scale images and use CNN to jointly
learn a spatio-temporal representation. Each gray scale image
corresponds to one axis in the joint coordinates. For example,
the coordinates in the x-axis throughout a skeleton sequence
generate one single-channel image. Each row is a spatial
distribution of coordinates at a certain time-stamp, and each
column is the temporal evolution of a certain joint. The
generated 2D arrays are then scaled and resized into a fixed
size. Gray scale images generated from the same skeleton
sequence are concatenated together and processed as a multi-
channel image, which is called the skeleton image.

Despite the large boost in recognition accuracy achieved
by previous CNN based methods, there exist two problems.
First, previous skeleton image representations lose spatial in-
formation. In previous methods, each row represents skeleton’s
spatial information by chaining all joints with a fixed order.
This concatenation process lacks semantic meaning and leads
to a loss in skeleton’s structural information. Although a
good chain order can perverse more spatial information, it
is impossible to find a perfect chain order that maintains all
spatial relations in the original skeleton structure. We propose
a Tree Structure Skeleton Image (TSSI) to preserve spatial
relations. TSSI is generated by traversing a skeleton tree with
a depth-first order. We assume the spatial relations between
joints are represented by the edges that connect them in the
original skeleton structure, as shown in Figure 1 (a). The fewer
edges there are, the more relevant the joint pair is. Thus we
prove that TSSI best preserves the spatial relation.

Second, previous CNN based methods do not have the
ability to focus on spatial or temporal key stages. In skeleton
based action recognition, certain joints and frames are more
informative, like the joints on the arms in action ‘waving
hands’. Furthermore, certain joints may be inaccurately pre-
dicted and should be neglected. Therefore, it is important to



include attention mechanisms. For a 2D attention mask, each
row represents the spatial importance of key joints and each
column represents the temporal importance of key frames. We
propose a two-branch architecture for visual attention on a
single skeleton image. One branch generates an attention mask
with a larger receptive field and the other branch refines the
CNN feature. We first introduce the two-branch architecture
with a base attention model. Furthermore, a Global Long-
sequence Attention Network (GLAN) is proposed with refined
branch structures. Experiments on public datasets prove the ef-
fectiveness of the two improvements. The recognition accuracy
is superior to the state-of-the-art methods.

Our main contributions include the following:
• We propose a Tree Structure Skeleton Image (TSSI)

that better preserves the spatial relations in skeleton
sequences. TSSI is based on a depth-first tree traversal
order instead of direct concatenation.

• We propose a two-branch visual attention architecture
for skeleton based action recognition. A Global Long-
sequence Attention Network (GLAN) is introduced based
on the proposed architecture.

II. RELATED WORK

Compared to other frequently used modalities including
RGB videos [1], [2], [3] and optical flow [4], [5], [6], skeleton
sequences require much less computation and are robust across
views and datasets. With the advanced methods to acquire
reliable skeletons from RGBD sensors [7] or even single RGB
cameras [8], [17], [18], skeleton-based action recognition is
becoming increasingly popular.

Many previous skeleton-based action recognition methods
[19] model the temporal pattern of skeleton sequences with
Recurrent Neural Networks. Hierarchical structures [11], [12]
better represent the spatial relations between body parts. Other
works [20], [21] adopt attention mechanisms to locate spatial
key joints and temporal key stages in skeleton sequences. [13]
proposes a 2D LSTM network to learn spatial and temporal
relations simultaneously. [14] models spatio-temporal relations
with a two-stream RNN structure. Other effective approaches
include lie groups [10], [22] and nearest neighbor search [23].
Recently, graphical neural networks [24] achieve the state-of-
the-art performance on the skeleton based recognition task.

Comparing to LSTM or graphical model based methods,
the recently proposed CNN based approaches show a better
performance in learning skeleton representations. [15], [16]
propose to convert human skeleton sequences into gray scale
images, where the joint coordinates are represented by the
intensity of pixels. [25] proposes to generate skeleton images
with ‘Skepxels’ to better represent the joint correlations. In
this paper, we further improve the design of skeleton images
with a depth-first traversal on skeleton trees.

Attention mechanisms are important for skeleton based
action recognition. Previous LSTM based methods [20], [21]
learn attention weights between the stacked LSTM layers.
For CNN based methods, we propose that general visual
attention can be directly adopted to generate 2D attention

Fig. 1. Tree Structure Skeleton Image (TSSI). (a). Skeleton structure and
order in NTU RGB+D. (b). Skeleton tree for TSSI generating. (c). Joint
arrangements of naive skeleton images. (d). Joint arrangements of TSSI. (e).
An example frame of TSSI. Different colors represent different body parts.

masks, where each row represents spatial importance and each
column represents temporal importance. Visual attention has
achieved successes in many areas, including image captioning
[26], [27], RGB based action recognition [28], [29], image
classification [30], [31], sentiment analysis [32] and etc. Many
visual attention methods take an image sequence as input
[28], [33], or use extra information from another modality like
text [26], [27], [29]. Because a single skeleton image already
represents a spatio-temporal sequence without the need for
an extra modality, we propose a single frame based visual
attention structure with a same setting in [30], [31].

III. METHOD

In this section, we first introduce the previous design
of skeleton images and the base CNN structure. Then an
improved Tree Structure Skeleton Image (TSSI) is proposed.
Finally, we propose the idea of two-branch visual attention
architecture and introduce a Global Long-sequence Attention
Network (GLAN) based on the architecture.

A. Base Model

In CNN based skeleton action recognition, joint sequences
are arranged as 2D arrays that are processed as gray scale
images. We call such a generated image the ‘Skeleton Image’.
For a channel in skeleton images, each row contains the
chaining of joint coordinates at a certain time-stamp. Each
column represents the coordinates of a certain joint throughout
the entire video clip. The chain order of joints is pre-defined
and fixed. An arrangement of the 2D array is shown in Figure
1 (c). The generated 2D arrays are then scaled into 0 to 255,
and resized into a fixed size of 224 ∗ 224. The processed 2D
arrays are processed as gray scale images, where each channel
represents an axis of joint coordinates. The skeleton images



are fed into CNNs for action recognition. We use ResNet-50
[34] as the base ConvNet model. Comparing to RNN based
or graph neural network based method, CNN based methods
can better learn the spatio-temporal relations between joints.

B. Tree Structure Skeleton Image

A shortcoming in previous skeleton images is that each
row is arranged by simply concatenating all joints. Each row
contains the concatenation of all joints with a pre-defined chain
order. CNN has a feature that the receptive field grows larger
at higher levels. Therefore, the adjacent joints in each row or
column are learned first at lower levels. This implies that the
adjacent joints share more spatial relations in original skeleton
structure, which often do not hold in previous skeleton images.
In previous skeleton images, a generated array has 25 columns
representing the joint coordinates of joint 1 to 25 with joint
indexes shown in Figure 1 (a). An arrangement of the skeleton
image is shown in Figure 1 (c). In this case, a convolutional
kernel might cover joints [20, 21, 22, 23, 24] at a certain level
since these joints are adjacent in skeleton images. However,
these joints have less spatial relations in original skeleton
structures and should not be learned together directly.

To solve this problem, we propose a Tree Structure Skeleton
Image (TSSI) inspired by [13]. The basic assumption is that
the spatially related joints in original skeletons have direct
graph links between them. The less edges required to connect a
pair of joints, the more related is the pair. The human structure
graph is defined with semantic meanings as shown in 1 (a).
In the proposed TSSI, the direct concatenation of joints is
replaced by a depth-first tree traversal order. The skeleton tree
is defined in Figure 1 (b) and an arrangement of TSSI is shown
in Figure 1 (d). The depth-first tree traversal order for each
row is [2, 21, 3, 4, 3, 21, 5, 6, 7, 8, 22, 23, 22, 8, 7, 6, 5,
21, 9, 10, 11, 12, 24, 25, 24, 12, 11, 10, 9, 21, 2, 1, 13,
14, 15, 16, 15, 14, 13, 1, 17, 18, 19, 20, 19, 18, 17, 1, 2].
With the proposed order, the neighboring columns in skeleton
images are spatially related in original skeleton structures. This
proves that the TSSI best preserves the spatial relations. With
TSSI, the spatial relations between related joints are learned
first at lower levels of CNN and the relations between less
relevant joints are learned later at high levels when receptive
field becomes larger. An example of the generated TSSI is
shown in Figure 1 (e).

C. Attention Networks

In skeleton sequences, certain joints and frames are extra
distinguishable for recognizing actions. For example in action
‘waving hands’, the joints in arms are more informative. These
informative joints and frames are referred to as ‘key stages’.
Furthermore, noise exists in the captured joint data and dete-
riorates the recognition accuracy. The inaccurate joints should
be automatically filtered out or neglected by the network.

To alleviate data noise and to focus on informative stages,
skeleton based methods should adjust weights for different
inputs automatically. We propose the idea of two-branch visual
attention structure and further design a Global Long-sequence
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Fig. 2. A base attention module and a GLAN module. (a). A base attention
block. (b). An expanded plot for the Hourglass mask branch in GLAN. (c).
An attention block with GLAN structure, short for ‘GLAN block’.

Attention Network (GLAN) based on the idea. In this section,
we first introduce the basic idea of the two-branch attention
architecture with a base attention model. Then the detailed
structure of the Global Long-sequence Attention Network
(GLAN) is introduced.

Base Attention Model. Skeleton images naturally represent
both spatial and temporal information of skeleton sequences.
Therefore a 2D attention mask can represent spatio-temporal
importance simultaneously, where the weights in each row
represent the spatial importance of joints and the weight in
each column represent the temporal importance of frames.
In order to generate the attention masks, we propose a two-
branch attention architecture that learns attention masks from
a single skeleton image. The two-branch structure is consist
of ‘mask branches’ and ‘residual branches’. Taking previous
CNN feature blocks as inputs, the mask branch learns a 2D
attention mask and the residual branch refines previous CNN
feature. The two branches are then merged and output a
weighted CNN feature block. To be specific, the mask branch
learns an attention mask with a structure that has a larger
receptive field. The residual branch is designed to maintain
and refine the input CNN features with convolutional layers.
The two branches are fused at the end of each attention block
with element-wise multiply and sum.

We first introduce the base attention model, which is the
simplest version of two-branch attention structures. As shown
in Figure 2 (a), the mask branch in the base model gains a
larger receptive field with a single convolutional layer. Softmax
or Sigmoid functions are used for mask generating. The
residual branch preserves the input CNN feature with a direct
link. An ‘attention block’ is defined as a structure with one
mask branch and one residual branch as Figure 2 (a). Attention
blocks are added between the convolutional blocks in base
CNN to build the whole network. In the base attention model,
attention blocks are inserted between ResNet-50’s residual
blocks, with the structure of residual blocks unchanged.

Global Long-sequence Attention Network (GLAN) Based
on the proposed two-branch structure, we improve the designs
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Fig. 3. The framework for Global Long-sequence Attention Network (GLAN).

of both branches to learn masks and CNN features more
effectively. Inspired by the hourglass structure [35], [31], we
propose a Global Long-sequence Attention Network (GLAN)
as shown in Figure 3. The hourglass structure is adopted in
mask branches to quickly adjust the feature size and efficiently
gain a larger receptive field. As shown in Figure 2 (b), the
hourglass structure is consist of a series of down-sampling
units followed by up-sampling units. In each hourglass mask
branch, input CNN features are first down-sampled to the low-
est spatial resolution of 7∗7 and recovered back to the original
size. Max pooling is used for down-sampling and bilinear
interpolation is used for up-sampling. Each down-sampling
unit includes a max pooling layer, a followed residual unit and
a link connection to the recovered feature with a same size.
Each up-sampling unit contains a bilinear interpolation layer, a
residual unit and a element-wise sum with the link connection.
We show that the Convolution-Deconvolution structure gains
a large receptive field effectively and therefore can better learn
an attention mask. For residual branches, we add two residual
units to further refine the learned CNN feature. All residual
units are the same as ResNet-50 [34], which contains three
convolutional units and a direct residual link.

As shown in Figure 3, three GLAN attention blocks are
added between the four residual blocks in ResNet-50 to build
the GLAN network. The depth of each GLAN blocks varies
due to the different input feature sizes. Furthermore, we reduce
the number of residual units in each residual block to keep a
proper depth of the GLAN network, since GLAN blocks are
much deeper than the base attention blocks. Only one residual
unit is kept for the first three residual blocks. The final residual
block keeps all three residual units as in ResNet-50.

IV. EXPERIMENTS

The proposed method is evaluated on the NTU RGB+D
dataset [12] and the SBU Kinect Interaction Dataset [36]. We
further evaluate the effectiveness of each proposed module
separately. The experiments show that both the TSSI and the
two-branch attention network generates a large boost in action
recognition accuracy. The performance of the proposed model
outperforms the state-of-the-arts on all datasets.

A. Datasets

NTU RGB+D. The NTU RGB+D dataset [12] is so far the
largest 3D skeleton action recognition dataset. NTU RGB+D
has 56880 videos collected from 60 action classes, including

40 daily actions, 9 health-related actions and 11 mutual
actions. The dataset is collected with Kinect and the recorded
skeletons include 25 joints. The train/val/test split follows [12].
Samples with missing joints are discarded as in that paper.

SBU Kinect Interaction. The SBU Kinect Interaction
dataset [36] contains 282 skeleton sequences and 6822 frames.
We follow the standard experiment protocol of 5-fold cross
validations with the provided splits. The dataset contains eight
classes. There are two persons in each skeleton frame and
15 joints are labeled for each person. The two skeletons are
processed as two data samples during training and the averaged
prediction score is calculated for testing.

B. Effectiveness of the Proposed Modules

To prove the effectiveness of the TSSI and attention net-
works, we separately evaluate each module. Each component
of the framework is evaluated on NTU RGB+D with a cross
subject setting. NTU RGB+D is selected for component eval-
uations because it is the the largest and the most challenging
dataset so far. Similar results are observed on other datasets.

Traditional Skeleton Image + ConvNet. As a baseline, we
adopt the previous skeleton image representation from [15] and
use ResNet-50 as a base CNN model to train spatio-temporal
skeleton representations. We test the three spatial joint orders
proposed by Sub-JHMDB [37], PennAction [38] and NTU
RGB+D [12]. Experiments show that the NTU RGB+D’s order
generates a better accuracy of 1.3% than the rest two orders.
Therefore, we adopt the joint order proposed by NTU RGB+D
for baseline comparison. The order is shown in Figure 1 (a).

TSSI + ConvNet. The effectiveness of the proposed Tree
Structure Skeleton Image (TSSI) is compared to the baseline
design of skeleton images. TSSI is the skeleton image gener-
ated with a depth-first tree traversal order. The skeleton tree
structure, TSSI arrangement and a TSSI example is shown in
Figure 1 (b), (d), (e). A large boost in accuracy is observed
from 68.0% to 73.1%, which proves the effectiveness of TSSI.

TSSI + Base Attention. The base attention model provides
a baseline for two-branch attention networks. The base at-
tention blocks with and without residual links are inserted at
three different locations in ResNet-50, that is at the front after
the first convolutional layer, in the middle after the second
residual block and in the end after the final residual block.
The input feature blocks to the three attention blocks have
the shapes of 112 ∗ 112 ∗ 64, 28 ∗ 28 ∗ 512 and 7 ∗ 7 ∗ 2048.
The recognition accuracy boosts from 73.1% to 74.9%. This



TABLE I
THE ACTION RECOGNITION ACCURACY COMPARING TO THE

STATE-OF-THE-ART METHODS ON THE NTU RGB+D DATASET.

State-of-the-art Cross
Subject

Cross
View

Lie Group [10] 51.0 52.8
HBRNN [11] 59.1 64.0

Part-aware LSTM [12] 62.9 70.3
Trust Gate LSTM [13] 69.2 77.7
Two-stream RNN [14] 71.3 79.5

TCN [16] 74.3 83.1
Global Attention LSTM [20] 74.4 82.8

A2GNN [24] 72.7 82.8
Clips+CNN+MTLN [15] 79.6 84.8
Ensemble TS-LSTM [19] 76.0 82.6

Proposed Model Cross
Subject

Cross
View

Base Model 68.0 75.5
With TSSI 73.1 76.5

TSSI + Base Attention 74.9 79.1
TSSI + GLAN 80.1 85.2

experiment shows that even the simplest two-branch attention
network can improve the recognition accuracy.

TSSI + GLAN. Finally, we evaluate the proposed Global
Long-sequence Attention Network (GLAN). The number of
link connections and the depth of the hourglass mask branch
can be manually adjusted. In experiments, we first down-
sample the feature blocks to a lowest resolution of 7 ∗ 7 and
then up-sample them back to the input size. Each max pooling
layer goes with one residual unit, one link connection and one
up-sampling unit. With a GLAN structure shown in Figure 3,
the recognition accuracy increases from 74.9% to 80.1%.

C. Comparisons to Other State-of-the-Art

NTU RGB+D. As shown in Table I, the base model
with naive skeleton images already outperforms a number
of previous LSTM based method, without adopting attention
mechanism. This shows that CNN based methods are promis-
ing for skeleton based action recognition. With the improved
TSSI, the cross subject accuracy achieves 73.1%, which is
comparable to the state-of-the-art LSTM methods. Finally, the
proposed two-branch attention architecture achieves a good
performance and the GLAN outperforms the state-of-the-arts.
Experiments prove the effectiveness of the proposed CNN
based action recognition method.

SBU Kinect Interaction. Similar to the performance on the
NTU RGB+D dataset, the proposed TSSI and GLAN gener-
ates a large boost in recognition accuracy and outperforms the
state-of-the-arts. The performances are shown in Table II.

Furthermore, the proposed TSSI and two-branch attention
networks can be adopted as components in future work, e.g.,
by fusing features generated by TSSI + GLAN with other
LSTM based features, for further improvements.

D. Error Case Analysis

To better understand the successful and failure cases, experi-
ments are conducted to analyze the performances of each class.
As shown in Table III, two parts of analysis are conducted.
First, eight classes that constantly perform the best or worst
are selected on the left side of Table III. Results show that the

TABLE II
THE RECOGNITION ACCURACY COMPARING TO THE STATE-OF-THE-ART

METHODS ON THE SBU KINETIC INTERACTION DATASET.

State-of-the-art Accuracy
Raw Skeleton [36] 49.7

HBRNN [11] 80.4
Trust Gate LSTM [13] 93.3
Two-stream RNN [14] 94.8

Global Attention LSTM [20] 94.1
Clips+CNN+MTLN [15] 93.6

Proposed Model Accuracy
Base Model 82.0
With TSSI 89.2

TSSI + Base Attention 93.6
TSSI + GLAN 95.6

actions with dynamic body movements like standing, sitting
and walking can be well classified with skeletons, while the
classes with less motions like reading, writing and clapping
usually have a poor result. This follows human intuition that
skeletons are more useful for distinguishing dynamic actions,
while additional background context information is necessary
for recognizing the actions with less motions. The results also
show that the proposed TSSI and GLAN both generates a large
boost in performance in all the listed classes. On the right
side of the table, statistics of the best and worst classes are
listed. Results show that TSSI + GLAN greatly improve the
accuracy in challenging classes. The top 1 worst class in TSSI
+ GLAN has an accuracy of 39.7%, which is even better than
the averaged accuracy of the worst 10 in base model. For the
best classes, the top 1 accuracy between the baseline and TSSI
+ GLAN is similar. The improvements are obtained through
the increases in the more challenging classes.

V. CONCLUSION

Using CNN for skeleton based action recognition is a
promising approach. In this work, we address the two major
problems with previous CNN based methods, that is the
improper design of skeleton images and the lack of attention
mechanisms. The design of skeleton images is improved by
introducing the Tree Structure Skeleton Image (TSSI). The
two-branch attention structure is then introduced for visual
attention on skeleton images. A Global Long-sequence Atten-
tion Network (GLAN) is proposed based on the two-branch
attention structure. Experiments show that the proposed en-
hancement modules greatly improve the recognition accuracy,
especially on the challenging classes.
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