Personalized Pose Estimation for Body Language Understanding

Zhengyuan Yang, Jiebo Luo Department of Computer Science University of Rochester

Pose Estimation

• Locating the keypoints on human body.

Upper body pose estimation

Full body pose estimation

Multi-person pose estimation

Motivation

Public Security

• Human-Computer Interaction

• Video Analysis

Literature Review

- Human motion studies with wearable sensors Using wearable sensors to record the motion of body parts.
- Direct Mapping methods

Regressing image features directly into a vector of joints coordinates.

Parts-based methods

Decomposing appearances into body part image patches.

• Heatmap methods

A set of confidence maps as the regression output.

Motivation beyond Typical Solutions

• Seeking perfect results on stable videos.

- Application in conversation monitoring:
 - -Less motion
 - -Accuracy and stability.

Our Framework

Individual frame refinement

Short-term Motion-based refinement

Long-term refinement

Individual Frame Refinement

Individual frame refinement

Short-term Motion-based refinement

7

Long-term refinement

HAJIM school of engineering & applied sciences university rochester

Short-term Refinement

Long-term Refinement

Individual frame refinement

Short-term Motion-based refinement

9

Long-term refinement

HAJIM school of engineering & applied sciences university rochester

URMC Dataset

- Eight videos lasting from 15 to 30 minutes. Labeled with joints positions.
- A scene depicts the conversation between a patient and a psychiatrist. To infer symptoms with body languages.
 - Sitting behind table: only upper body.
 - Less body part motion.

- Quantitative Evaluation
- Measurements on public datasets: FLIC, ChaLearn.
- Radius distance threshold for accuracy measurement.

- Quantitative Evaluation
- Best Performance on all joints.
- Prove the effectiveness of the three refinements.

Method	Head	Wrsts	Elbws	Shldrs	Avg.
Pfister et al. [16]	76.8	65.4	75.6	70.9	71.5
Pfister et al. [12]	88.8	71.3	69.6	84.8	77.1
Spatial	79.8	66.8	77.4	76.0	74.2
Fusion	89.5	72.5	73.3	81.4	77.7
Fusion + OF	89.3	74.6	75.6	82.5	79.3
Fusion + $OF + P$	92.0	80.2	81.8	89.2	84.9

COMPUTER SCIENCE

Qualitative Evaluation

Qualitative Evaluation

Summary

- We propose a framework for human pose estimation under stable videos with the three refinement steps. These three steps are:
 - 1. A fully convolutional spatial fusion architecture for frame level refinement.
 - 2. Optical flow based short-term refinement.
 - **3.** Personalized annotation step for refinement with long-term information.
- We also establish a psychiatric conversation dataset (URMC dataset) for subtle body language extraction and mental disorder detection.

Thank you for your attention! Questions?

Contact: jiebo.luo@gmail.com

HAJIM school of engineering & applied sciences university&rochester

COMPUTER

Back Up Slides

Proposed Method

OpenPose

COMPUTER SCIENCE

Demo of personalize step

Before personalized step

After personalized step

DEPARTMENT OF

COMPUTER SC

• Further example on occluded case

COMPUTER SCIENCE