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ABSTRACT

To achieve high accuracy and stability in human pose esti-
mation from videos, we propose a personalized model with a
specially designed ConvNet structure and a visual similarity
based iteration step. This model consists of: 1) a fully con-
volutional network with spatial fusion architecture to boost
the accuracy of single-frame based joint predictions, 2) opti-
cal flow-based refinement to incorporate motion and temporal
information, and 3) iterative personalized annotation to boost
the reliability of the joint predictions. For benchmarking, our
model outperforms the state-of-the-art on the public pose es-
timation datasets Chalearn and FLIC. Moreover, our model
performs the best on a new psychiatric conversation dataset
for computer vision based body language and emotion study.

Index Terms— Pose Estimation, Body Parts Tracking,
Convolutional Neural Networks, Medical Video Analysis

1. INTRODUCTION

Human pose estimation is crucial for many applications. Tra-
ditional human pose estimation methods include edge-based
histograms [1], silhouette contours [2], pictorial structures
[3, 4, 5] and deformable part models [6]. The recent suc-
cess of convolutional neural networks [7] in human pose esti-
mation has greatly improved the overall performance of many
systems [4, 8, 9, 10, 11, 12, 13, 14]. Significant improvements
in accuracy have been observed on various datasets, includ-
ing the FLIC dataset [15], the BBC Pose dataset [16, 17] and
the Chalearn dataset [18]. However, with the additional chal-
lenge introduced by dramatic whole body movements (e.g.
dancing, exercising) in these datasets, even the state-of-the-
art methods can generate implausible predictions on certain
joints [13]. Motivated by our targeted application of inferring
subtle body languages and emotions from videos, we propose
a personalized model to boost the accuracy and reliability of
human pose estimation in videos with subtle human gestures.

In our task, a vision based model is desired to assist psy-
chiatrists in assessing mental disorders from their conversa-
tion videos with patients. In conversation videos, subjects’
subtle gestures pose challenges to the approach of direct ac-
tion recognition with visual representations, and may cause

frequent recognition failures. For example, touching nose
and touching mouth with hands have similar visual percep-
tions, while they have totally different implications from the
perspective of psychiatry. Some examples of major body lan-
guages can be found in Enkivillage 1. As extract body lan-
gauges, pose estimation is the first step. The output results
are then employed to infer subtle human body languages in
psychiatric conversation videos.

To meet the requirements of high accuracy and reliability
in human pose estimation, we propose the following improve-
ments to the traditional ConvNet based methods. Inspired
by [12], we propose a spatial fusion architecture to extract
the spatial relations between the joints, while constructing the
network as fully convolutional. Note that this is an alternative
to learning spatial relations with graphical models [8]. Fur-
thermore, we use an iterative personalized annotation step to
boost the reliability of joint predictions. This step iteratively
discards and regenerates joint predictions with a selection cri-
terion based on the visual similarity of the joints throughout
the entire video.

For performance evaluation, experiments are done on two
public datasets, FLIC and Chalearn. The high accuracy ver-
ifies the effectiveness of the spatial fusion ConvNet architec-
ture and the personalized annotation step. Furthermore, a psy-
chiatric conversation dataset is established and tested on. Our
model also outperforms the state-of-the-art on the proposed
dataset and shows the promise for medical applications.

In summary, we make the following contributions:
• We propose a fully convolutional spatial fusion archi-

tecture, in contrast to graphical models, to encode the
spatial relations between the joints.
• We introduce a personalized annotation step to boost

the reliability of the joint predictions. The percentage
of implausible annotations is iteratively reduced.
• We establish a psychiatric conversation dataset for

computer vision based subtle body language extraction
and mental disorder detection.

In the remainder of the paper, Section 2 describes our pro-
posed model, Section 3 presents the datasets, the experimen-
tal design and the results, with conclusions in Section 4.

1http://www.enkivillage.com/body-language-examples.html



2. METHODOLOGY

2.1. Architecture Overview

In this paper, the psychiatric conversation video analysis task
is formulated as an upper-body human pose estimation prob-
lem. Different from general pose estimation problems, this
task has specific requirements on high accuracy and reliabil-
ity in order to infer subtle body languages.

As shown in Fig. 1, our model includes three specifically
designed components. A fully convolutional network with the
spatial fusion layers takes individual RGB frames as the input
and independently outputs predicted heatmaps for the frames.
The output heatmaps are then refined with optical flow be-
tween the centered frame and its temporal neighbors. Finally,
the visual features in patches around the joints are adopted
to iteratively discard and regenerate joint predictions. We as-
sume that joints and their surroundings should share similar
visual representations throughout a long video.

2.2. ConvNet Model Architecture

We propose a fully convolutional architecture with spatial fu-
sion layers. Instead of producing joint locations directly from
RGB frames [9, 16], the network output is a 2D heatmap that
represents the probability of the joints appearing at certain lo-
cations. The network architecture includes two parts, namely
spatial layers and spatial fusion layers.
Spatial Layer Architecture The spatial layer architecture is
constructed based on the model in [16], which contains five
convolutional layers followed by two fully connected layers
for joint coordinate regression. We replace the fully con-
nected layers with three additional convolutional layers, con-
verting the outputs from the directly regressed coordinates to
the heatmaps of joint locations. The loss is calculated as the
L2 distance between the predicted heatmap and the ground
truth heatmap, which is generated as Gaussian distributions
around the ground truth joint coordinates. This loss replaces
the distance based loss used in the direct regression model. In
a pose estimation task, the ”likely correct predictions” might
not be close to the ground truth. Instead, possible locations
often locate near the patches that share the similar visual rep-
resentations with the ground truth, for example the pair of the
left and right wrists. The fully convolutional architecture can
iteratively suppress the sub-peaks in the heatmaps, therefore
help the network output better converge to the ground truth
location. It is noteworthy that the heatmap output is conve-
nient for visualization and further refinement.
Spatial Fusion Layer The fully convolutional spatial archi-
tecture allows the existence of sub-peaks in the heatmaps. Al-
though this architecture helps the network better converge, it
has a potential disadvantage in that the sub-peaks may be mis-
taken as the final prediction, for example, the prediction of the
left wrist sometime appears near the right wrist. To solve this
problem, five extra convolutional layers, namely spatial fu-

sion layers, are proposed to learn the spatial relations among
the joints. An alternative approach to learning spatial rela-
tions is using graphical models [8].

The input of the spatial fusion layers are the concatenation
of Conv-Layer 3’s output and Conv-Layer 7’s output. The
Conv-Layer 3’s output contains more low-level visual fea-
tures and information about the joint spatial relations, while
Conv-Layer 7’s output contains mostly the predicted confi-
dence maps of the joint locations.

2.3. Optical Flow-based Refinement

Given the heatmaps predicted by the ConvNet, optical flow is
then used to boost the accuracy and temporal smoothness of
the predictions. For a target frame at time t, the frames in a
time window [t − n, t + n] are included for refinement. Op-
tical flow is calculated between the centered frame and every
other frames in the time window with DeepFlow [19]. The
calculated optical flow is then warped with the heatmap pre-
dicted from the centered frame. Finally, the warped heatmaps
are averaged with Gaussian weights and the joint locations
are regressed as the locations of the maximum values in the
warped heatmaps.

2.4. Personalized Annotation

To further boost the reliability of pose estimation and to
avoid the occasionally implausible predictions, an iterative
personalized annotation step is proposed. The idea of the
personalized annotation step is to compare the similarity be-
tween the visual features around the joints in each frame and
the ones in other frames. We make the assumption that the
same patch’s visual features should be similar in different
frames in a long video. Therefore, existing joint annotations
can be discarded and new candidates can be generated by
matching the joint patches. The level of similarity is decided
by a set of classifiers and the whole process is done itera-
tively, over the following four steps:
Initial Annotation: We generate the joint predictions with
high reliability by setting a confidence value threshold in the
step of converting the heatmaps to the joint coordinates. The
network described in Section 2.2 and 2.3 is adopted.
Spatial Matching: We build a set of classifiers to match the
joint patches from the annotated frames to ones in the can-
didate frames. Random forest classifiers are trained for in-
dividual joints with multiple window sizes for classification.
For verification, HOG similarities are calculated between the
candidate patches and the initially annotated patches.
Temporal Propagation: An exemplar-SVM is trained to
match the patches with the visual similarity measurement.
Based on the measurement and the optical flow calculated
using the method in [19], new candidate annotations are
propagated forward and backward to the neighboring frames.
However, many are inaccurate and will be discarded during
further iterations.



Fig. 1: Model architecture. Our proposed model contains three parts: a fully convolutional network for heatmap prediction,
followed by optical flow refinement, and finally a personalized annotation step to boost the reliability of the predictions.

Self Evaluation: Annotation evaluation criteria are proposed
to Automatically fuse and select the candidate annotations,
including a) Candidate Annotation Fusion: If multiple pre-
dictions exist, which are propagated from different initial
frames, a single prediction will be selected as the 2D location
with maximum annotation density. Also, a pre-set annotation
density threshold has to be met, or all the multiple predictions
will be discarded; b) Puppet Model: We train a linear SVM
with RGB and HOG features to determine if lower arms are
in correct positions; c) Occlusion Detection: HOG and RGB
features are fed into another SVM classifier for body parts
occlusion detection. The annotations will be discarded if they
fail to meet any of the evaluation criteria in the self evaluation
step. In addition, failed joints will be randomly re-evaluated.

3. EXPERIMENTS

3.1. Dataset

Frames Labeled In Cinema (FLIC) FLIC [15] is a dataset
collected automatically from the Hollywood movies. The
initial version of FLIC contains 5003 images, among which
1016 are selected as the testing set. Images are annotated
manually with the crowd-sourcing marketplace Amazon Me-
chanical Turk. 10 upper-body joints are labeled and the
median five labels are taken for each image.
Chalearn The Chalearn 2013 multi-model gesture dataset
[18] includes the gesture data of 27 people, including au-
dio, skeletal models, user masks, RGB and depth image
sequences. There are 956 sequences, lasting 23 hours and
include 1.3 million frames. Since the joint annotations are
generated from Kinect, both training and testing labels are
noisy. Chalearn shares several similarities with our target
application because it is also collected by Kinect and focuses
mainly on the upper body gestures.
Psychiatric Conversation Dataset This dataset is estab-
lished in collaboration with the University of Rochester Med-
ical Center (URMC). This dataset is built to assist studies
on inferring subtle body languages from videos. Eight high-
resolution long videos are collected, lasting from 15 to 30
minutes (9,000 to 18,000 frames). The content of each video
is the conversation between a patient and a psychiatrist. Pa-
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Fig. 2: Performance comparison on the FLIC dataset. Our
experiments follow the standard approach on FLIC, reporting
the accuracy of the wrists and shoulders with a normalized
distance threshold (Torso height equals to 100 pixels).

tients remain sitting behind a table throughout the video, and
only the upper body is captured.

3.2. Component Evaluation

The evaluation method from [15] is applied, which calculates
the accuracy based on a radius distance threshold. The input
images are cropped based on the ground-truth torso height,
and re-scaled to a height of 256. On the FLIC dataset, torso
height is normalized to 100 pixels and on the psychiatric con-
versation dataset the normalized height is 150 pixels.
Spatial Fusion Layer On the psychiatric conversation dataset,
we observe a significant improvement in accuracy with the
spatial fusion architecture. There is an additional 3.5% gain
from 74.2% to 77.7% at d = 5 pixels, and the gain remains
in the high recall area from 90.0% to 93.5% at d = 6 pixels,
where d is the radius distance threshold. Similar gains are
also observed on FLIC and Chalearn. The improvement is
obtained by learning the plausible joint locations with the
extra spatial fusion layers, and suppressing the implausible
predictions caused by visual ambiguity. Moreover, the deeper
convolutional architecture further boosts the accuracy in the
high precision area.
Optical Flow-based Refinement A further 1.6% gain is ob-
served on the psychiatric conversation dataset from 77.7%
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Fig. 3: Performance comparison on the psychiatric conversation dataset. Only the joints with annotations are used in accuracy
calculation for the personalized annotation method. Best viewed on screen with zoom-in, or in print.

Fig. 4: Examples of pose estimation. The first three images and their predicted annotations are from the psychiatric conversation
dataset. The middle two images are from FLIC. The last two images are from Chalearn. All the images shown above have been
pre-processed (cropped, and background subtracted for Chalearn).

to 79.3% at d = 5 pixels. The optical flow-based refine-
ment step considers the motion between frames and extract
temporal information with a weighted average of the neigh-
boring heatmaps. The refinement step improves the temporal
smoothness of the predictions, and boosts the accuracy with
information from the neighboring frames.
Personalized Annotation The iterative personalized anno-
tation iteration step provides a significant gain of 5.6% on
the psychiatric conversation dataset from 79.3% to 84.9%
at d = 5 pixels. The iteration step greatly boosts the accu-
racy and reliability of the predictions, although it may fail to
provide annotations to all the joints.

3.3. Comparison with the Baseline and State-of-the-Art

Psychiatric Conversation Dataset Our model is tested on
the psychiatric conversation dataset. The results are presented
in Table 1. Furthermore, Fig. 3 presents the accuracy curve
under different distance thresholds. The model in [16] is com-
pared as the baseline, which includes an end-to-end ConvNet
to regress the location of the joints directly. Experiments are
also conducted with the state-of-the-art method [12] on the
psychiatric conversation dataset. The results are obtained us-
ing our re-implementation based on released partial code. We
argue that our better performance is mainly due to the per-
sonalized annotation step. Although a small number of the
predictions fail to be generated, the iterative personalized an-
notation step greatly improves the performance of the predic-
tions, which is valuable for inferring subtle body languages.
FLIC/Chalearn Following the standard experiment approach
on the FLIC dataset [15], we report the accuracy of the shoul-
ders and wrists in Fig. 2. Size of the frames are normalized
with the torso height to 100 pixels. The model in [20] are

Method Head Wrsts Elbws Shldrs Avg.
Pfister et al. [16] 76.8 65.4 75.6 70.9 71.5
Pfister et al. [12] 88.8 71.3 69.6 84.8 77.1

Spatial 79.8 66.8 77.4 76.0 74.2
Fusion 89.5 72.5 73.3 81.4 77.7

Fusion + OF 89.3 74.6 75.6 82.5 79.3
Fusion + OF + P 92.0 80.2 81.8 89.2 84.9

Table 1: Comparison of accuracy (%) on psychiatric conver-
sation dataset with a fixed threshold at d = 5 pixels. The
threshold is selected at which can best distinguish the differ-
ence between models.

compared as the baseline. The results on Chalearn are similar
and thus omitted to conserve space.

4. CONCLUSIONS

We propose a novel model for highly accurate and reliable 2D
human pose estimation. The model is a fully convolutional
ConvNet with the spatial fusion layers. The output heatmaps
are further refined with optical flow along with the visual rep-
resentation around the joints. Our model outperforms several
state-of-the-art methods on the proposed psychiatric conver-
sation dataset. It also achieves the state-of-the-art accuracy
on two public pose estimation datasets.

We plan to employ the predicted joints to infer body lan-
guages and emotion during psychiatric conversations, as well
as combine pose estimation with action recognition.
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