
CSC172 LAB

C POINTERS

1 Introduction
The labs in CSC172 will follow a pair programming paradigm. Every student is encouraged (but not
strictly required) to have a lab partner. Labs will typically have an even number of components. The
two partners in a pair programming environment take turns at the keyboard. This paradigm facilitates
code improvement through collaborative efforts, and exercises the programmers cognitive ability to
understand and discuss concepts fundamental to computer programming. The use of pair programming
is optional in CSC172. It is not a requirement. You can learn more about the pair programming
paradigm, its history, methods, practical benefits, philosophical underpinnings, and scientific validation
at http://en.wikipedia.org/wiki/Pair_programming .

Every student must hand in his own work, but every student must list the name of the lab partner (if
any) on all labs.

This lab has six parts. You and your partner(s) should switch off typing each part, as explained by your
lab TA. As one person types the lab, the other should be watching over the code and offering
suggestions. Each part should be in addition to the previous parts, so do not erase any previous work
when you switch.

The textbook should present examples of the code necessary to complete this lab. However,
collaboration is allowed. You and your lab partner may discuss the lab with other pairs in the lab. It is
acceptable to write code on the white board for the benefit of other lab pairs, but you are not allowed to
electronically copy and/or transfer files between groups.

2 A Simple Linked List
The goal of this lab it to gain familiarity with pointers in the 'C' programming language.

1. Begin this lab by implementing a simple C program with a “main” function. Use the prototype
for main that is used with command line arguments below. Include a “for” loop that prints out
the command line arguments, one argument per line. You may refer to the code in Kernighan
and Ritchie if you need help.

int main(int argc, char * argv [])

2. Have the second member of your pair implement the pointer version of “strcmp”.

/* strcmp: return <0 if s<t, 0 if s==t, >0 if s>t */

int strcmp(char *s, char *t)

3. Implement a pointer version of “strcat”. (string concatenate). Recall that the “array” version of
strcat is found in chapter 2 of your book. You need to implement the pointer version.

4. Implement a pointer version of “strcpy”. (string copy).

5. Add an “if” statement to the “for” loop in your main routine. Use the “if” statement to check
each command line argument. If the command line argument is either your name or your
partner's name change it to print out a “Hello, “ before your name. All other command line
arguments should be printed out with no change, one argument per line. You should do this by
using strcpy to copy the eight characters in “Hello, “ into a char array 30 or so characters long.
Use strcmp to check the argv char arrays (strings). When you find one of your names,
concatenate the string containing your name to the big array containing “Hello, “, then print out
the resulting string.

6. Declare an array of int at least 10 elements long. Fill in the array with the square of its index
using array syntax, a[i] = i * i ;. Print out the array using pointer syntax *(a + i).

3 Hand In
Hand in the source code from this lab at the appropriate location on the blackboard system at

my.rochester.edu. You should hand in a single compressed/archived (i.e. “zipped”) file that contains
the following.

1. A README that includes your contact information, your partner's name, a brief explanation of
the lab (A one paragraph synopsis. Include information identifying what class and lab number
your files represent.). \

2. The source code files representing the work accomplished for this lab. All source code files
should contain author and partner identification in the comments at the top of the file.

3. A plain text file named OUTPUT that includes author information at the beginning and shows
the compile and run steps of your code. The best way to generate this file is to cut and paste
from the command line.

4 Grading
172/grading.html

Each section (1-6) accounts for 15% of the lab grade (total 90%)

(README file counts for 10%)

	1 Introduction
	2 A Simple Linked List
	3 Hand In
	4 Grading

