
Formal Languages and Automata Theory

Chris Brown

1 Week 2:

Do NOT attempt to submit these assignments through Blackboard: you can’t. Use
the turn-in box outside Marty’s office.

2.2.1. Design an automaton to read strings from the [0,1] alphabet, and to
accept any string that has no more than two consecutive 1’s. That is, accept unless
111 is a substring of the input string read so far (or, reject as soon as, but only
when, you see 111 in the input). The zero-length (null) string is therefore legal.

2.2.2.Design an automaton that tells whether a given character string is one
of the third-person singular pronounshe, his, him, she, her, hers,
followed by a blank.

2.2.3. Describe in English the language of the following NDFA.

a

a
b

a

2.2.4. Write the regular expression for the previous NDFA.

2.2.5. Using subset construction, convert the NDFA to a DFA.

1

2.2.6. Describe in English the language of the following regular expression.

(ab)* (ba)* | ab*

2.2.7. Convert the previous regular expression into an NDFA with epsilon
transitions.

2.2.8. Draw a deterministic finite automaton with four states that recognizes
the strings with the alphabet{a,b} in which the number of timesab appears is
even.

2 Weeks 3 and 4:

2.4.1. Write a CFG for all strings containing 0 and 1 that contain the same number
of 0s and 1s. Show parse trees for the strings 001101 and 0110.

2.4.2. Show that the following grammar (where the last production is an ep-
silon production and lower-case symbols are terminals) is ambiguous:

S → a S b S

S → b S a S

S → ǫ

2.4.3. Informally,First(A) is defined to be the set of tokens that can begin
some string of tokens derived fromA. ComputeFirst(Stmt) for the following
grammar fragment:

Stmt → LabeledOpt Loop

Stmt → indent := Expr

LabeledOpt → number :
LabeledOpt → ǫ

Loop → while Condition { StmtList }
Loop → do { StmtList } until Condition

2

2.4.4. Remove left recursion from the following grammar:

IdList → IdListPrefix ;
IdListPrefix → IdListPrefix , id
IdListPrefix → id

2.4.5. Performleft factoringon (that is, remove common prefixes from) the
following:

Stmt → id := Expr

Stmt → id (ArgumentList)

Why do you think this operation is called left factoring?

2.4.6. Formally prove that the following grammar is LL(1) using first and
follow sets:

S → (L)
S → a

L → SLtail

Ltail → , L

Ltail → ǫ

3

