76 Chapter 2 Prograrmming Language Syntax

First sets for all symbols:
for all terminals a FIRST(a) = {a}
for all nonterminals X. FIRSTLX) = @
for all productions X —> €, add € to PIRSTIX)
repeat
(outen) for all productions x — Y, V2 LY
(inner) foriint..
add (PIRST(Y ) ™~ {e)) 10 pIRSTIX)
fed FIRST(Y {yet)
continue outer loop
add e 10 FIRST{X)
until no further progress

First set subroutine for string X1 X2 ..X,, similar to inner loop above:
return.value \= &
foriint..n
add (FIRST(X ) > (e} 1o return_vaiue
ifed FIRST(X))
return
add € 10 return_vaiue

Follow sets for all symbols:
FOLLOW(S) = {e}), where S is the start gymbol
for all other symbols X, FoLLOWIX) = &
repeat
for all productions A —> o B B,
add (FIRST{A) {ehto FoLLOW(B)
for all productions A —>
orA —>a B p.where € € FIRST(BY,
add FOLLOW(A) 1O FOLLOW(B)
until no further progress

predict sets for all productionsz
! for all productions A —
PREDICTIA — o) = {FIRST(00) > {e])
Ulife € FIRST ) then FOLLOW(A) else @)

Figure 113 Algorithm to calculate FIRST, FOLLOW, and PREDICT sets. The grammar is LL(H)

if and only if the PREDICT sefs are disjoint.

: (ie., converge ona solution), because the sizes of the sets are bounded by the

' number of terminals in the grammar.

| If in the process of calculating PREDICT sets We find that some token belongs

! to the PREDICT set of more than one production with the same left-hand sid&:

! then the grammar is not LL(1)s because we will not be able to choose whic
of the productions to employ when the left-hand side is at the top of the pare
stack (or we are in the left-hand side’s subroutine in a recursive descent parsct" i
and we see the token coming up in the input. This sort of ambiguity 15 known
asa predict—predict conflict; it can arise either because the same token ¢af! begi




