
CS2LAP: Logi
 and Prolog 2000/2001 An Introdu
tion to Prolog Programming'

&

$

%

An Introdu
tion to Prolog ProgrammingUlle EndrissKing's College London
Ulle Endriss, King's College London 1
CS2LAP: Logi
 and Prolog 2000/2001 An Introdu
tion to Prolog Programming'

&

$

%

ContentsIntrodu
tion to Prolog . 3List Manipulation . 26Arithmeti
 Expressions . 41Working with Operators . 50Ba
ktra
king and Cuts . 62Negation as Failure . 74Prolog Programs as Logi
 Formulas . 86
Ulle Endriss, King's College London 2

CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

What is Prolog?� Prolog (programming in log i
) is a logi
al programminglanguage: programs
orrespond to sets of logi
al formulas andthe Prolog interpreter uses logi
al methods to resolve queries.� Prolog is a de
larative language: you spe
ify what problem youwant to solve rather than how to solve it.� Prolog is very useful in some problem areas, like arti�
ialintelligen
e, natural language pro
essing, databases, . . . , butpretty useless in others, like graphi
s or numeri
al algorithms.
Ulle Endriss, King's College London 3
CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Literature� Prolog le
ture notes� I. Bratko. Prolog Programming for Arti�
ial Intelligen
e.2nd edition, Addison-Wesley Publishing Company, 1990.� F. W. Clo
ksin and C. S. Mellish. Programming in Prolog.4th edition, Springer-Verlag, 1994.� L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.� any other textbook on Prolog
Ulle Endriss, King's College London 4

CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Fa
tsA little Prolog program
onsisting of four fa
ts:bigger(elephant, horse).bigger(horse, donkey).bigger(donkey, dog).bigger(donkey, monkey).
Ulle Endriss, King's College London 5
CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

QueriesAfter
ompilation we
an query the Prolog system:?- bigger(donkey, dog).Yes?- bigger(monkey, elephant).No
Ulle Endriss, King's College London 6

CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

A ProblemThe following query does not su

eed!?- bigger(elephant, monkey).NoThe predi
ate bigger/2 apparently is not quite what we want.What we'd really like is the transitive
losure of bigger/2. In otherwords: a predi
ate that su

eeds whenever it is possible to go fromthe �rst animal to the se
ond by iterating the previously de�nedfa
ts.Ulle Endriss, King's College London 7
CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

RulesThe following two rules de�ne is bigger/2 as the transitive
losureof bigger/2 (via re
ursion):is_bigger(X, Y) :- bigger(X, Y).is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y)." "\if" \and"
Ulle Endriss, King's College London 8

CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Now it works?- is_bigger(elephant, monkey).YesEven better, we
an use the variable X:?- is_bigger(X, donkey).X = horse ;X = elephant ;NoPress ; to �nd alternative solutions. No at the end indi
ates there areno further solutions.Ulle Endriss, King's College London 9
CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Another ExampleAre there any animals whi
h are both smaller than a donkey andbigger than a monkey??- is_bigger(donkey, X), is_bigger(X, monkey).No
Ulle Endriss, King's College London 10

CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

TermsProlog terms are either numbers, atoms, variables, or
ompoundterms.Atoms start with a lower
ase letter or are en
losed in single quotes:elephant, xYZ, a_123, 'Another pint please'Variables start with a
apital letter or the unders
ore:X, Elephant, _G177, MyVariable, _
Ulle Endriss, King's College London 11
CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Terms (
ontinued)Compound terms have a fun
tor (an atom) and a number ofarguments (terms):is_bigger(horse, X), f(g(Alpha, _), 7),'My Fun
tor'(dog)Atoms and numbers are
alled atomi
 terms.Atoms and
ompound terms are
alled predi
ates.Terms without variables are
alled ground terms.
Ulle Endriss, King's College London 12

CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Fa
ts and RulesFa
ts are predi
ates followed by a dot. Fa
ts are used to de�nesomething as being un
onditionally true.bigger(elephant, horse).parent(john, mary).Rules
onsist of a head and a body separated by :-. The head of arule is true if all predi
ates in the body
an be proved to be true.grandfather(X, Y) :-father(X, Z),parent(Z, Y).Ulle Endriss, King's College London 13
CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Programs and QueriesPrograms. Fa
ts and rules are
alled
lauses. A Prolog program is alist of
lauses.Queries are predi
ates (or sequen
es of predi
ates) followed by adot. They are typed in at the Prolog prompt and
ause the system toreply.?- is_bigger(horse, X), is_bigger(X, dog).X = donkeyYes
Ulle Endriss, King's College London 14

CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Built-in Predi
ates� Compiling a program �le:?-
onsult('big-animals.pl').Yes� Writing terms on the s
reen:?- write('Hello World!'), nl.Hello World!Yes
Ulle Endriss, King's College London 15
CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Mat
hingTwo terms mat
h if they are either identi
al or if they
an be madeidenti
al by substituting their variables with suitable ground terms.We
an expli
itly ask Prolog whether two given terms mat
h by usingthe equality-predi
ate = (written as an in�x operator).?- born(mary, yorkshire) = born(mary, X).X = yorkshireYesThe variable instantiations are reported in Prolog's answer.Ulle Endriss, King's College London 16

CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Mat
hing (
ontinued)?- f(a, g(X, Y)) = f(X, Z), Z = g(W, h(X)).X = aY = h(a)Z = g(a, h(a))W = aYes?- p(X, 2, 2) = p(1, Y, X).NoUlle Endriss, King's College London 17
CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

The Anonymous VariableThe variable (unders
ore) is
alled the anonymous variable. Everyo

urren
e of represents a di�erent variable (whi
h is whyinstantiations are not reported).?- p(_, 2, 2) = p(1, Y, _).Y = 2Yes
Ulle Endriss, King's College London 18

CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Answering QueriesAnswering a query means proving that the goal represented by thatquery
an be satis�ed (a

ording to the programs
urrently inmemory).Re
all: Programs are lists of fa
ts and rules. A fa
t de
laressomething as being true. A rule states
onditions for a statementbeing true.
Ulle Endriss, King's College London 19
CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Answering Queries (
ontinued)� If a goal mat
hes with a fa
t, it is satis�ed.� If a goal mat
hes the head of a rule, then it is satis�ed if the goalrepresented by the rule's body is satis�ed.� If a goal
onsists of several subgoals separated by
ommas, thenit is satis�ed if all its subgoals are satis�ed.� When trying to satisfy goals with built-in predi
ates like write/1Prolog also performs the asso
iated a
tion (e.g. writing on thes
reen).Ulle Endriss, King's College London 20

CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Example: Mortal PhilosophersConsider the following argument:All men are mortal.So
rates is a man.Hen
e, So
rates is mortal.It has two premises and a
on
lusion.
Ulle Endriss, King's College London 21
CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Translating it into PrologThe two premises
an be expressed as a little Prolog program:mortal(X) :- man(X).man(so
rates).The
on
lusion
an then be formulated as a query:?- mortal(so
rates).Yes
Ulle Endriss, King's College London 22

CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Goal Exe
ution1. The query mortal(so
rates) is made the initial goal.2. Prolog looks for the �rst mat
hing fa
t or head of rule and �ndsmortal(X). Variable instantiation: X = so
rates.3. This variable instantiation is extended to the rule's body, i.e.man(X) be
omes man(so
rates).4. New goal: man(so
rates).5. Su

ess, be
ause man(so
rates) is a fa
t itself.6. Therefore, also the initial goal su

eeds.Ulle Endriss, King's College London 23
CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Summary: Syntax� All Prolog expression are made up from terms (numbers, atoms,variables, or
ompound terms).� Atoms start with lower
ase letters or are en
losed in singlequotes; variables start with
apital letters or unders
ore.� Prolog programs are lists of fa
ts and rules (
lauses).� Queries are submitted to the system to initiate a
omputation.� Some built-in predi
ates have spe
ial meaning.
Ulle Endriss, King's College London 24

CS2LAP: Logi
 and Prolog 2000/2001 Introdu
tion to Prolog'

&

$

%

Summary: Answering Queries� When answering a query Prolog tries to prove the
orrespondinggoal's satis�ability. This is done using the rules and fa
ts givenin a program.� A goal is exe
uted by mat
hing it with the �rst possible fa
t orhead of a rule. In the latter
ase the rule's body be
omes thenew goal.� The variable instantiations made during mat
hing are
arriedalong throughout the
omputation and reported at the end.� Only the anonymous variable
an be instantiated di�erentlywhenever it o

urs.Ulle Endriss, King's College London 25
CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

Lists in PrologAn example for a Prolog list:[elephant, horse, donkey, dog℄Lists are en
losed in square bra
kets. Their elements
ould be anyProlog terms (in
luding other lists). The empty list is [℄.Another example:[a, X, [℄, f(X,y), 47, [a,b,
℄, bigger(
ow,dog)℄
Ulle Endriss, King's College London 26

CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

Internal RepresentationInternally, the list[a, b,
℄
orresponds to the term.(a, .(b, .(
, [℄)))That means, this is just a new notation. Internally, lists are just
ompound terms with the fun
tor . and the spe
ial atom [℄ as anargument on the innermost level.
Ulle Endriss, King's College London 27
CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

The Bar NotationIf a bar | is put just before the last term in a list, it means that thislast term denotes a sub-list. Inserting the elements before the bar atthe beginning of the sub-list yields the entire list.For example, [a, b,
, d℄ is the same as [a, b | [
, d℄℄.
Ulle Endriss, King's College London 28

CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

ExamplesExtra
t the se
ond element from a given list:?- [a, b,
, d, e℄ = [_, X | _℄.X = bYesMake sure the �rst element is a 1 and get the sub-list after these
ond element:?- MyList = [1, 2, 3, 4, 5℄, MyList = [1, _ | Rest℄.MyList = [1, 2, 3, 4, 5℄Rest = [3, 4, 5℄YesUlle Endriss, King's College London 29
CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

Head and TailThe �rst element of a list is
alled its head. The rest of the list is
alled its tail. (The empty list doesn't have a head.)A spe
ial
ase of the bar notation { with exa
tly one element beforethe bar { is
alled the head/tail-pattern. It
an be used to extra
thead and/or tail from a list. Example:?- [elephant, horse, tiger, dog℄ = [Head | Tail℄.Head = elephantTail = [horse, tiger, dog℄YesUlle Endriss, King's College London 30

CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

Head and Tail (
ontinued)Another example:?- [elephant℄ = [X | Y℄.X = elephantY = [℄YesNote: The tail of a list is always a list itself. The head of a list is anelement of that list. It doesn't have to be a list itself, but it
ould be.
Ulle Endriss, King's College London 31
CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

Appending ListsWe want to write a predi
ate
on
at lists/3 to
on
atenate twogiven lists.It should work like this:?-
on
at_lists([1, 2, 3, 4℄, [dog,
ow, tiger℄, L).L = [1, 2, 3, 4, dog,
ow, tiger℄Yes
Ulle Endriss, King's College London 32

CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

SolutionThe predi
ate
on
at lists/3 is implemented re
ursively. The base
ase is when one of the lists is empty. In every re
ursion step we takeo� the head and use the same predi
ate again, with the (shorter) tail,until we rea
h the base
ase.
on
at_lists([℄, List, List).
on
at_lists([Elem|List1℄, List2, [Elem|List3℄) :-
on
at_lists(List1, List2, List3).
Ulle Endriss, King's College London 33
CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

Do MoreAmong other things,
on
at lists/3
an also be used forde
omposing lists:?-
on
at_lists(Begin, End, [1, 2, 3℄).Begin = [℄End = [1, 2, 3℄ ;Begin = [1℄End = [2, 3℄ ;Begin = [1, 2℄End = [3℄ ;Begin = [1, 2, 3℄End = [℄ ;NoUlle Endriss, King's College London 34

CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

Built-in Predi
ates for List Manipulationappend/3: Append two lists (same as
on
at lists/3).?- append([1, 2, 3℄, List, [1, 2, 3, 4, 5℄).List = [4, 5℄Yeslength/2: Get the length of a list.?- length([tiger, donkey,
ow, tiger℄, N).N = 4YesUlle Endriss, King's College London 35
CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

Membershipmember/2: Test for membership.?- member(tiger, [dog, tiger, elephant, horse℄).YesBa
ktra
king into member/2:?- member(X, [dog, tiger, elephant℄).X = dog ;X = tiger ;X = elephant ;NoUlle Endriss, King's College London 36

CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

ExampleConsider the following program:show(List) :-member(Element, List),write(Element),nl,fail.Note: fail is a built-in predi
ate that always fails.What happens when you submit a query like the following one??- show([elephant, horse, donkey, dog℄).Ulle Endriss, King's College London 37
CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

Example (
ontinued)?- show([elephant, horse, donkey, dog℄).elephanthorsedonkeydogNoThe fail at the end of the rule
auses Prolog to ba
ktra
k. Thesubgoal member(Element, List) is the only
hoi
epoint. In everyba
ktra
king-
y
le a new element of List is mat
hed with thevariable Element. Eventually, the query fails (No).Ulle Endriss, King's College London 38

CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

More Built-in Predi
atesreverse/2: Reverse the order of elements in a list.?- reverse([1, 2, 3, 4, 5℄, X).X = [5, 4, 3, 2, 1℄YesMore built-in predi
ates
an be found in the referen
e manual.
Ulle Endriss, King's College London 39
CS2LAP: Logi
 and Prolog 2000/2001 List Manipulation'

&

$

%

Summary: List Manipulation� List notation:{ normal: [Element1, Element2, Element3℄ (empty list: [℄){ internal: .(Element1, .(Element2, .(Element3, [℄))){ bar notation: [Element1, Element2 | Rest℄{ head/tail-pattern: [Head | Tail℄� Many predi
ates
an be implemented re
ursively, exploiting thehead/tail-pattern.� Built-in predi
ates: append/3, member/2, length/2, . . .Ulle Endriss, King's College London 40

CS2LAP: Logi
 and Prolog 2000/2001 Arithmeti
 Expressions'

&

$

%

Arithmeti
 Expressions in PrologProlog
omes with a range of prede�ned arithmeti
 fun
tions andoperators. Something like 3 + 5, for example, is a valid Prolog term.So, what's happening here??- 3 + 5 = 8.No
Ulle Endriss, King's College London 41
CS2LAP: Logi
 and Prolog 2000/2001 Arithmeti
 Expressions'

&

$

%

Mat
hing v Arithmeti
 EvaluationThe terms 3 + 5 and 8 do not mat
h. In fa
t, when we are interestedin the sum of the numbers 3 and 5, we
an't get it through mat
hing,but through arithmeti
 evaluation.We have to use the is-operator:?- X is 3 + 5.X = 8Yes
Ulle Endriss, King's College London 42

CS2LAP: Logi
 and Prolog 2000/2001 Arithmeti
 Expressions'

&

$

%

The is-OperatorThe is-operator
auses the term to its right to be evaluated as anarithmeti
 expressions and mat
hes the result of that evaluation withthe term on the operator's left. (The term on the left should usuallybe a variable.)Example:?- Value is 3 * 4 + 5 * 6, OtherValue is Value / 11.Value = 42OtherValue = 3.81818YesUlle Endriss, King's College London 43
CS2LAP: Logi
 and Prolog 2000/2001 Arithmeti
 Expressions'

&

$

%

The is-Operator (
ontinued)Note that the term to the right will be evaluated to an integer (i.e.not a
oat) whenever possible:?- X is 3.5 + 4.5.X = 8YesThat means, a further subgoal like X = 8.0 would not su

eed.
Ulle Endriss, King's College London 44

CS2LAP: Logi
 and Prolog 2000/2001 Arithmeti
 Expressions'

&

$

%

Example: Length of a ListInstead of using length/2 we
an now write our own predi
ate to
ompute the length of a list:len([℄, 0).len([_ | Tail℄, N) :-len(Tail, N1),N is N1 + 1.
Ulle Endriss, King's College London 45
CS2LAP: Logi
 and Prolog 2000/2001 Arithmeti
 Expressions'

&

$

%

Fun
tionsProlog provides a number of built-in arithmeti
 fun
tions that
an beused with the is-operator. See manual for details.Examples:?- X is max(8, 6) - sqrt(2.25) * 2.X = 5Yes?- X is (47 mod 7) ** 3.X = 125YesUlle Endriss, King's College London 46

CS2LAP: Logi
 and Prolog 2000/2001 Arithmeti
 Expressions'

&

$

%

RelationsArithmeti
 relations are used to
ompare two arithmeti
 values.Example:?- 2 * 3 > sqrt(30).YesThe following relations are available:=:= arithmeti
 equality =n= arithmeti
 inequality> greater >= greater or equal< lower =< lower or equalUlle Endriss, King's College London 47
CS2LAP: Logi
 and Prolog 2000/2001 Arithmeti
 Expressions'

&

$

%

ExamplesRe
all the di�eren
e between mat
hing and arithmeti
 evaluation:?- 3 + 5 = 5 + 3.No?- 3 + 5 =:= 5 + 3.YesRe
all the operator pre
eden
e of arithmeti
s:?- 2 + 3 * 4 =:= (2 + 3) * 4.No?- 2 + 3 * 4 =:= 2 + (3 * 4).YesUlle Endriss, King's College London 48

CS2LAP: Logi
 and Prolog 2000/2001 Arithmeti
 Expressions'

&

$

%

Summary: Arithmeti
s in Prolog� For logi
al pattern mat
hing use =, for arithmeti
 evaluation usethe is-operator.� A range of built-in arithmeti
 fun
tions is available (some arewritten as operators, e.g. +).� Arithmeti
 expressions
an be
ompared using arithmeti
relations like < or =:= (without is-operator).
Ulle Endriss, King's College London 49
CS2LAP: Logi
 and Prolog 2000/2001 Working with Operators'

&

$

%

Operators in PrologOperators provide a more
onvenient way of writing
ertain terms inProlog. For example, we
an write 3 * 155 instead of *(3, 155) orN is M + 1 instead of is(N, +(M, 1)).Both notations are
onsidered to be equivalent, i.e. mat
hing works:?- +(1000, 1) = 1000 + 1.YesThe obje
tive of this le
ture is to show you how you
an de�ne yourown operators in Prolog.Ulle Endriss, King's College London 50

CS2LAP: Logi
 and Prolog 2000/2001 Working with Operators'

&

$

%

Operator Pre
eden
eSome operators bind stronger than others. In mathemati
s, forexample, * binds stronger than +. We also say, * has a lowerpre
eden
e than +.In Prolog, operator pre
eden
es are numbers (in SWI-Prolog between0 and 1200). The arithmeti
al operator *, for example, haspre
eden
e 400, + has pre
eden
e 500.This is why Prolog is able to
ompute the
orre
t result in thefollowing example (i.e. not 25):?- X is 2 + 3 * 5.X = 17YesUlle Endriss, King's College London 51
CS2LAP: Logi
 and Prolog 2000/2001 Working with Operators'

&

$

%

Pre
eden
e of TermsThe pre
eden
e of a term is de�ned as the pre
eden
e of its prin
ipaloperator. If the prin
ipal fun
tor isn't (written as) an operator or theterm is en
losed in parentheses then the pre
eden
e is de�ned as 0.Examples:� The pre
eden
e of 3 + 5 is 500.� The pre
eden
e of 3 * 3 + 5 * 5 is also 500.� The pre
eden
e of sqrt(3 + 5) is 0.� The pre
eden
e of elephant is 0.� The pre
eden
e of (3 + 5) is 0.� The pre
eden
e of 3 * +(5, 6) is 400.Ulle Endriss, King's College London 52

CS2LAP: Logi
 and Prolog 2000/2001 Working with Operators'

&

$

%

Operator TypesOperators
an be divided into three groups:� in�x operators, like + in Prolog� pre�x operators, like : in logi
� post�x operators, like ! in mathIs giving the type of an operator and its pre
eden
e already enoughfor Prolog to fully `understand' the stru
ture of a term
ontainingthat operator?
Ulle Endriss, King's College London 53
CS2LAP: Logi
 and Prolog 2000/2001 Working with Operators'

&

$

%

ExampleConsider the following example:?- X is 25 - 10 - 3.X = 12YesWhy not 18?Obviously, pre
eden
e and type alone are not enough to fully spe
ifythe stru
tural properties of an operator.
Ulle Endriss, King's College London 54

CS2LAP: Logi
 and Prolog 2000/2001 Working with Operators'

&

$

%

Operator Asso
iativityWe also have to spe
ify the asso
iativity of an operator: -, forexample, is left-asso
iative. This is why 20 - 10 - 3 is interpretedas (20 - 10) - 3.In Prolog, asso
iativity is represented by atoms like yfx. Here findi
ates the position of the operator (i.e. yfx denotes an in�xoperator) and x and y indi
ate the positions of the arguments. A yshould be read as on this position a term with a pre
eden
e lower orequal to that of the operator has to o

ur, whereas x means that onthis position a term with a pre
eden
e stri
tly lower to that of theoperator has to o

ur.Ulle Endriss, King's College London 55
CS2LAP: Logi
 and Prolog 2000/2001 Working with Operators'

&

$

%

Asso
iativity PatternsPattern Asso
iativity Examplesyfx in�x left-asso
iative +, -, *xfy in�x right-asso
iative , (for subgoals)xfx in�x non-asso
iative =, is, < (i.e. no nesting)yfy makes no sense, stru
turing would be impossiblefy pre�x asso
iativefx pre�x non-asso
iative - (i.e. --5 not possible)yf post�x asso
iativexf post�x non-asso
iativeUlle Endriss, King's College London 56

CS2LAP: Logi
 and Prolog 2000/2001 Working with Operators'

&

$

%

Che
king Pre
eden
e and Asso
iativityYou
an use the built-in predi
ate
urrent op/3 to
he
k pre
eden
eand asso
iativity of
urrently de�ned operators.?-
urrent_op(Pre
, Asso
, *).Pre
 = 400Asso
 = yfxYes?-
urrent_op(Pre
, Asso
, is).Pre
 = 700Asso
 = xfxYesUlle Endriss, King's College London 57
CS2LAP: Logi
 and Prolog 2000/2001 Working with Operators'

&

$

%

De�ning OperatorsNew operators are de�ned using the op/3-predi
ate. This
an bedone by submitting the operator de�nition as a query. Terms usingthe new operator will then be equivalent to terms using the operatoras a normal fun
tor, i.e. predi
ate de�nitions will work.For the following example assume the big animals program haspreviously been
ompiled:?- op(400, xfx, is_bigger).Yes?- elephant is_bigger dog.YesUlle Endriss, King's College London 58

CS2LAP: Logi
 and Prolog 2000/2001 Working with Operators'

&

$

%

Query Exe
ution at Compilation TimeIt is possible to write queries into a program �le (using :- as a pre�xoperator). They will be exe
uted whenever the program is
ompiled.If for example the �le my-file.pl
ontains the line:- write('Hello, have a beautiful day!').this will have the following e�e
t:?-
onsult('my-file.pl').Hello, have a beautiful day!my-file.pl
ompiled, 0.00 se
, 224 bytes.Yes?-Ulle Endriss, King's College London 59
CS2LAP: Logi
 and Prolog 2000/2001 Working with Operators'

&

$

%

Operator De�nition at Compilation TimeYou
an do the same for operator de�nitions. For example, the line:- op(200, fy, small).inside a program �le will
ause a pre�x operator
alled small to bede
lared whenever the �le is
ompiled. It
an be used inside theprogram itself, in other programs, and in user queries.
Ulle Endriss, King's College London 60

CS2LAP: Logi
 and Prolog 2000/2001 Working with Operators'

&

$

%

Summary: Operators� The stru
tural properties of an operator are determined by itspre
eden
e (a number) and its asso
iativity pattern (like e.g.yfx).� Use
urrent op/3 to
he
k operator de�nitions.� Use op/3 to make your own operator de�nitions.� Operator de�nitions are usually in
luded inside a program �le asqueries (using :-, i.e. like a rule without a head).
Ulle Endriss, King's College London 61
CS2LAP: Logi
 and Prolog 2000/2001 Ba
ktra
king and Cuts'

&

$

%

Ba
ktra
kingChoi
epoints. Subgoals that
an be satis�ed in more than one wayprovide
hoi
epoints. Example:..., member(X, [a, b,
℄), ...This is a
hoi
epoint, be
ause the variable X
ould be mat
hed witheither a, b, or
.Ba
ktra
king. During goal exe
ution Prolog keeps tra
k of
hoi
epoints. If a parti
ular path turns out to be a failure, it jumpsba
k to the most re
ent
hoi
epoint and tries the next alternative.This pro
ess is known as ba
ktra
king.Ulle Endriss, King's College London 62

CS2LAP: Logi
 and Prolog 2000/2001 Ba
ktra
king and Cuts'

&

$

%

ExampleGiven a list in the �rst argument, the predi
ate permutation/2generates all possible permutations of that list in the se
ondargument through ba
ktra
king (if the user presses ; after everysolution):permutation([℄, [℄).permutation(List, [Element | Permutation℄) :-sele
t(List, Element, Rest),permutation(Rest, Permutation).Ulle Endriss, King's College London 63
CS2LAP: Logi
 and Prolog 2000/2001 Ba
ktra
king and Cuts'

&

$

%

Example (
ontinued)?- permutation([1, 2, 3℄, X).X = [1, 2, 3℄ ;X = [1, 3, 2℄ ;X = [2, 1, 3℄ ;X = [2, 3, 1℄ ;X = [3, 1, 2℄ ;X = [3, 2, 1℄ ;No
Ulle Endriss, King's College London 64

CS2LAP: Logi
 and Prolog 2000/2001 Ba
ktra
king and Cuts'

&

$

%

Problems with Ba
ktra
kingAsking for alternative solutions generates wrong answers for thispredi
ate de�nition:remove_dupli
ates([℄, [℄).remove_dupli
ates([Head | Tail℄, Result) :-member(Head, Tail),remove_dupli
ates(Tail, Result).remove_dupli
ates([Head | Tail℄, [Head | Result℄) :-remove_dupli
ates(Tail, Result).Ulle Endriss, King's College London 65
CS2LAP: Logi
 and Prolog 2000/2001 Ba
ktra
king and Cuts'

&

$

%

Problems with Ba
ktra
king (
ontinued)Example:?- remove_dupli
ates([a, b, b,
, a℄, List).List = [b,
, a℄ ;List = [b, b,
, a℄ ;List = [a, b,
, a℄ ;List = [a, b, b,
, a℄ ;NoUlle Endriss, King's College London 66

CS2LAP: Logi
 and Prolog 2000/2001 Ba
ktra
king and Cuts'

&

$

%

Introdu
ing CutsSometimes we want to prevent Prolog from ba
ktra
king into
ertain
hoi
epoints, either be
ause the alternatives would yield wrongsolutions (like in the previous example) or for eÆ
ien
y reasons.This is possible by using a
ut, written as !. This prede�nedpredi
ate always su

eeds and prevents Prolog from ba
ktra
king intosubgoals pla
ed before the
ut inside the same rule body.
Ulle Endriss, King's College London 67
CS2LAP: Logi
 and Prolog 2000/2001 Ba
ktra
king and Cuts'

&

$

%

ExampleThe
orre
t program for removing dupli
ates from a list:remove_dupli
ates([℄, [℄).remove_dupli
ates([Head | Tail℄, Result) :-member(Head, Tail), !,remove_dupli
ates(Tail, Result).remove_dupli
ates([Head | Tail℄, [Head | Result℄) :-remove_dupli
ates(Tail, Result).Ulle Endriss, King's College London 68

CS2LAP: Logi
 and Prolog 2000/2001 Ba
ktra
king and Cuts'

&

$

%

CutsParent goal. When exe
uting the subgoals in a rule's body the termparent goal refers to the goal that
aused the mat
hing of the head ofthe
urrent rule.Whenever a
ut is en
ountered in a rule's body, all
hoi
esmade between the time that rule's head has been mat
hedwith the parent goal and the time the
ut is passed are �nal,i.e. any
hoi
epoints are being dis
arded.
Ulle Endriss, King's College London 69
CS2LAP: Logi
 and Prolog 2000/2001 Ba
ktra
king and Cuts'

&

$

%

Exer
iseUsing
uts (but without using negation), implement a predi
ateadd/3 to insert an element into a list, if that element isn't already amember of the list. Make sure there are no wrong alternativesolutions. Examples:?- add(elephant, [dog, donkey, rabbit℄, List).List = [elephant, dog, donkey, rabbit℄ ;No?- add(donkey, [dog, donkey, rabbit℄, List).List = [dog, donkey, rabbit℄ ;NoUlle Endriss, King's College London 70

CS2LAP: Logi
 and Prolog 2000/2001 Ba
ktra
king and Cuts'

&

$

%

Solutionadd(Element, List, List) :-member(Element, List), !.add(Element, List, [Element | List℄).
Ulle Endriss, King's College London 71
CS2LAP: Logi
 and Prolog 2000/2001 Ba
ktra
king and Cuts'

&

$

%

Problems with CutsThe predi
ate add/3 does not work as intended when the lastargument is already instantiated! Example:?- add(dog, [dog,
at, bird℄, [dog, dog,
at, bird℄).Yes
Ulle Endriss, King's College London 72

CS2LAP: Logi
 and Prolog 2000/2001 Ba
ktra
king and Cuts'

&

$

%

Summary: Ba
ktra
king and Cuts� Ba
ktra
king allows Prolog to �nd all alternative solutions to agiven query.� That is: Prolog provides the sear
h strategy, not theprogrammer! This is why Prolog is
alled a de
larative language.� Carefully pla
ed
uts (!)
an be used to prevent Prolog fromba
ktra
king into
ertain subgoals. This may make a programmore eÆ
ient and/or avoid the generation of (wrong) alternative.
Ulle Endriss, King's College London 73
CS2LAP: Logi
 and Prolog 2000/2001 Negation as Failure'

&

$

%

Prolog's AnswersConsider the following Prolog program:animal(elephant).animal(donkey).animal(tiger).. . . and the system's rea
tion to the following queries:?- animal(donkey).Yes?- animal(du
kbill).NoUlle Endriss, King's College London 74

CS2LAP: Logi
 and Prolog 2000/2001 Negation as Failure'

&

$

%

The Closed World AssumptionIn Prolog, Yes means a statement is provably true. Consequently, Nomeans a statement is not provably true. This only means that su
h astatement is false, if we assume that all relevant information ispresent in the respe
tive Prolog program.For the semanti
s of Prolog programs we usually do make thisassumption. It is
alled the Closed World Assumption: we assumethat nothing outside the world des
ribed by a parti
ular Prologprogram exists (is true).
Ulle Endriss, King's College London 75
CS2LAP: Logi
 and Prolog 2000/2001 Negation as Failure'

&

$

%

The n+-OperatorIf we are not interested whether a
ertain goal su

eeds, but ratherwhether it fails, we
an use the n+-operator (negation). n+ Goalsu

eeds, if Goal fails (and vi
e versa). Example:?- \+ member(17, [1, 2, 3, 4, 5℄).YesThis is known as negation as failure: Prolog's negation is de�ned asthe failure to provide a proof.
Ulle Endriss, King's College London 76

CS2LAP: Logi
 and Prolog 2000/2001 Negation as Failure'

&

$

%

Negation as Failure: ExampleConsider the following program:married(peter, lu
y).married(paul, mary).married(bob, juliet).married(harry, geraldine).single(Person) :-\+ married(Person, _),\+ married(_, Person).Ulle Endriss, King's College London 77
CS2LAP: Logi
 and Prolog 2000/2001 Negation as Failure'

&

$

%

Example (
ontinued)After
ompilation Prolog rea
ts as follows:?- single(mary).No?- single(
laudia).YesIn the
losed world des
ribed by our Prolog program Claudia has tobe single, be
ause she is not known to be married.
Ulle Endriss, King's College London 78

CS2LAP: Logi
 and Prolog 2000/2001 Negation as Failure'

&

$

%

Where to use n+Note that the n+-operator
an only be used to negate goals. Theseare either (sub)goals in the body of a rule or (sub)goals of a query.We
annot negate fa
ts or the heads of rules, be
ause this woulda
tually
onstitute a rede�nition of the n+-operator (in other wordsan expli
it de�nition of Prolog's negation, whi
h wouldn't be
ompatible with the
losed world assumption).
Ulle Endriss, King's College London 79
CS2LAP: Logi
 and Prolog 2000/2001 Negation as Failure'

&

$

%

Disjun
tionWe already now know
onjun
tion (
omma) and negation (n+). Wealso know disjun
tion, be
ause several rules with the same head
orrespond to a disjun
tion.Disjun
tion
an also be implemented dire
tly within one rule byusing ; (semi
olon). Example:parent(X, Y) :- father(X, Y); mother(X, Y).This is equivalent to the following program:parent(X, Y) :- father(X, Y).parent(X, Y) :- mother(X, Y).Ulle Endriss, King's College London 80

CS2LAP: Logi
 and Prolog 2000/2001 Negation as Failure'

&

$

%

ExampleWrite a Prolog program to evaluate a row of a truth table. (Assumeappropriate operator de�nitions have been made before.)Examples:?- true and false.No?- true and (true and false implies true) and neg false.Yes
Ulle Endriss, King's College London 81
CS2LAP: Logi
 and Prolog 2000/2001 Negation as Failure'

&

$

%

Solution% Falsityfalse :- fail.% Conjun
tionand(A, B) :- A, B.% Disjun
tionor(A, B) :- A; B.
Ulle Endriss, King's College London 82

CS2LAP: Logi
 and Prolog 2000/2001 Negation as Failure'

&

$

%

Solution (
ontinued)% Negationneg(A) :- \+ A.% Impli
ationimplies(A, B) :- A, !, B.implies(_, _).
Ulle Endriss, King's College London 83
CS2LAP: Logi
 and Prolog 2000/2001 Negation as Failure'

&

$

%

NoteWe know that in
lassi
al logi
 :A is equivalent to A)?. Similarly,instead of using n+ in Prolog we
ould de�ne our own negationoperator as follows:neg(A) :- A, !, fail.neg(_).
Ulle Endriss, King's College London 84

CS2LAP: Logi
 and Prolog 2000/2001 Negation as Failure'

&

$

%

Summary: Negation and Disjun
tion� Closed World Assumption: In Prolog everything that
annot beproven from the given fa
ts and rules is
onsidered false.� Negation as Failure: Prolog's negation is implemented as thefailure to provide a proof for a statement.� Goals
an be negated using the n+-operator.� A disjun
tion of goals
an be written using ; (semi
olon).� (The
omma between two subgoals denotes a
onjun
tion.)
Ulle Endriss, King's College London 85
CS2LAP: Logi
 and Prolog 2000/2001 Prolog Programs as Logi
 Formulas'

&

$

%

Logi
 and PrologToday we shall see how Prolog programs
an be interpreted as sets oflogi
 formulas. In fa
t, when pro
essing a query, Prolog is a
tuallyapplying the rules of a logi
al dedu
tion system similar to thegoal-dire
ted
al
ulus.
Ulle Endriss, King's College London 86

CS2LAP: Logi
 and Prolog 2000/2001 Prolog Programs as Logi
 Formulas'

&

$

%

Corresponden
eProlog First-order Logi
predi
ate predi
ateargument termvariable universally quanti�ed variableatom
onstant/fun
tion/predi
ate symbolsequen
e of subgoals
onjun
tion:- impli
ation (other way round)
Ulle Endriss, King's College London 87
CS2LAP: Logi
 and Prolog 2000/2001 Prolog Programs as Logi
 Formulas'

&

$

%

QuestionWhat is the logi
al meaning of this program?bigger(elephant, horse).bigger(horse, donkey).is_bigger(X, Y) :- bigger(X, Y).is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).
Ulle Endriss, King's College London 88

CS2LAP: Logi
 and Prolog 2000/2001 Prolog Programs as Logi
 Formulas'

&

$

%

Answerf bigger(elephant; horse);bigger(horse; donkey);8x:8y:(bigger(x; y)) is bigger(x; y));8x:8y:8z:(bigger(x; z) ^ is bigger(z; y)) is bigger(x; y)) g
Ulle Endriss, King's College London 89
CS2LAP: Logi
 and Prolog 2000/2001 Prolog Programs as Logi
 Formulas'

&

$

%

Translation of Programs� Predi
ates remain the same (synta
ti
ally).� Commas separating subgoals be
ome ^.� :- be
omes) and the order of head and body is
hanged.� Every variable is bound to a universal quanti�er (8).
Ulle Endriss, King's College London 90

CS2LAP: Logi
 and Prolog 2000/2001 Prolog Programs as Logi
 Formulas'

&

$

%

Translation of QueriesQueries are translated like rules; the `empty head' is translated as ?.This
orresponds to the negation of the goal whose provability we tryto test when submitting a query to Prolog.Logi
ally speaking, instead of deriving the goal itself, we try to provethat adding the negation of the goal to the program would make itin
onsistent: P; A)? ` ? i� P ` A
Ulle Endriss, King's College London 91
CS2LAP: Logi
 and Prolog 2000/2001 Prolog Programs as Logi
 Formulas'

&

$

%

ExampleThe query?- is_bigger(elephant, X), is_bigger(X, donkey).
orresponds to the following �rst-order formula:8x:(is bigger(elephant; x) ^ is bigger(x; donkey)) ?)
Ulle Endriss, King's College London 92

CS2LAP: Logi
 and Prolog 2000/2001 Prolog Programs as Logi
 Formulas'

&

$

%

Horn FormulasThe formulas we get when translating all have the same stru
ture:A1 ^ A2 ^ � � � ^ An) BSu
h a formula
an be rewritten as follows:A1 ^ A2 ^ � � � ^ An) B �:(A1 ^ A2 ^ � � � ^ An) _ B �:A1 _ :A2 _ � � � _ :An _BHen
e, formulas obtained from translating Prolog
lauses
an alwaysbe rewritten as equivalent Horn formulas (disjun
tions of literalswith at most one positive literal).Ulle Endriss, King's College London 93
CS2LAP: Logi
 and Prolog 2000/2001 Prolog Programs as Logi
 Formulas'

&

$

%

ResolutionThe sear
h tree built up by Prolog when trying to answer a query
orresponds to a logi
 proof using resolution, whi
h is a very eÆ
ientdedu
tion system for Horn formulas. A short introdu
tion
an befound in the notes; for more details refer to theoreti
ally orientedbooks on logi
 programming.It is also possible to think of a Prolog goal exe
ution as agoal-dire
ted proof in �rst-order logi
. The data formulas in su
h aproof would represent a list of
lauses and fa
ts, and a goal formulawould
orrespond to a Prolog query.Ulle Endriss, King's College London 94

CS2LAP: Logi
 and Prolog 2000/2001 Prolog Programs as Logi
 Formulas'

&

$

%

Summary: Logi
 Foundations� Prolog programs
orrespond to sets of �rst-order logi
 (Horn)formulas.� During translation, :- be
omes an impli
ation (from right toleft),
ommas between subgoals
orrespond to
onjun
tions, andall variables need to be universally quanti�ed. Queries be
ome(universally quanti�ed) impli
ations with ? in the
onsequent.� Prolog's sear
h to satisfy a query
orresponds to a logi
al proof.In prin
iple, any dedu
tion
al
ulus
ould be used. Histori
ally,Prolog is based on resolution, whi
h is parti
ularly suited as it istailored for Horn formulas.Ulle Endriss, King's College London 95

