CS2LAP: Logic and Prolog 2000/2001

An Introduction to Prolog Programming

-

-

An Introduction to Prolog Programming'

Ulle Endriss
King’s College London

~

Ulle Endriss, King’s College London

CS2LAP: Logic and Prolog 2000/2001

An Introduction to Prolog Programming

-

-

Introduction to Prolog il 3
List Manipulation i 26
Arithmetic Expressions ..., 41
Working with Operators 50
Backtracking and Cuts i 62
Negation as Failure i 74
Prolog Programs as Logic Formulas 86

Ulle Endriss, King’s College London

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

4 N
What is Prolog?'

e Prolog (programming in logic) is a logical programming

language: programs correspond to sets of logical formulas and
the Prolog interpreter uses logical methods to resolve queries.

e Prolog is a declarative language: you specify what problem you
want to solve rather than how to solve it.

e Prolog is very useful in some problem areas, like artificial
intelligence, natural language processing, databases, ..., but
pretty useless in others, like graphics or numerical algorithms.

N\ /

Ulle Endriss, King’s College London 3

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

4 N
Literature '

Prolog lecture notes

I. Bratko. Prolog Programming for Artificial Intelligence.
2nd edition, Addison-Wesley Publishing Company, 1990.

e F. W. Clocksin and C. S. Mellish. Programming in Prolog.
4th edition, Springer-Verlag, 1994.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

any other textbook on Prolog

N\ /

Ulle Endriss, King’s College London 4

CS2LAP: Logic and Prolog 2000/2001

Introduction to Prolog

-

A little Prolog program consisting of four facts:

bigger(elephant, horse).
bigger(horse, donkey).
bigger (donkey, dog).
bigger(donkey, monkey).

-

~

Ulle Endriss, King’s College London

CS2LAP: Logic and Prolog 2000/2001

Introduction to Prolog

After compilation we can query the Prolog system:

?- bigger(donkey, dog).
Yes

?7- bigger (monkey, elephant).
No

-

~

Ulle Endriss, King’s College London

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

4 ™
A Problem '

The following query does not succeed!

?7- bigger(elephant, monkey).
No

The predicate bigger/2 apparently is not quite what we want.

What we’d really like is the transitive closure of bigger/2. In other
words: a predicate that succeeds whenever it is possible to go from
the first animal to the second by iterating the previously defined

facts.
Ulle Endriss, King’s College London 7
CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

- D

The following two rules define is_bigger/2 as the transitive closure
of bigger/2 (via recursion):

is_bigger(X, Y) :- bigger(X, Y).

is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).
T T

“if?‘/ “and”

N\ /

Ulle Endriss, King’s College London 8

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

4 ™
Now it WOI‘kS'

?7- is_bigger(elephant, monkey).

Yes
Even better, we can use the variable X:

?7- is_bigger(X, donkey).

X = horse ;
X = elephant ;
No

Press ; to find alternative solutions. No at the end indicates there are

no further solutions.

N\ /

Ulle Endriss, King’s College London 9

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

4)

Another Example I

Are there any animals which are both smaller than a donkey and

bigger than a monkey?

?7- is_bigger(donkey, X), is_bigger(X, monkey).
No

N\ /

Ulle Endriss, King’s College London 10

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

- D

Prolog terms are either numbers, atoms, variables, or compound

terms.

Atoms start with a lowercase letter or are enclosed in single quotes:
elephant, xYZ, a_123, ’Another pint please’
Variables start with a capital letter or the underscore:

X, Elephant, _G177, MyVariable,

N\ /

Ulle Endriss, King’s College London 11

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

Terms (continued)

Compound terms have a functor (an atom) and a number of

arguments (terms):

is_bigger(horse, X), f(g(Alpha, _), 7),
’My Functor’(dog)

Atoms and numbers are called atomic terms.
Atoms and compound terms are called predicates.

Terms without variables are called ground terms.

N\ /

Ulle Endriss, King’s College London 12

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

4 ™
Facts and Rules.

Facts are predicates followed by a dot. Facts are used to define

something as being unconditionally true.

bigger (elephant, horse).
parent(john, mary).

Rules consist of a head and a body separated by :-. The head of a
rule is true if all predicates in the body can be proved to be true.

grandfather(X, Y) :-
father(X, Z),
parent(Z, Y).

N\ /

Ulle Endriss, King’s College London 13

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

Programs and Queries'

Programs. Facts and rules are called clauses. A Prolog program is a

list of clauses.

Queries are predicates (or sequences of predicates) followed by a
dot. They are typed in at the Prolog prompt and cause the system to
reply.

7- is_bigger(horse, X), is_bigger(X, dog).

X = donkey

Yes

N\ /

Ulle Endriss, King’s College London 14

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

4 ™
Built-in Predicates '

e Compiling a program file:

?7- consult(’big-animals.pl’).
Yes
e Writing terms on the screen:

?- write(’Hello World!’), nl.
Hello World!

Yes
Ulle Endriss, King’s College London 15
CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

4 ™
Matching I

Two terms match if they are either identical or if they can be made

identical by substituting their variables with suitable ground terms.

We can explicitly ask Prolog whether two given terms match by using
the equality-predicate = (written as an infix operator).

7- born(mary, yorkshire) = born(mary, X).
X = yorkshire
Yes

The variable instantiations are reported in Prolog’s answer.

N\ /

Ulle Endriss, King’s College London 16

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

Matching (continued) I

7- £f(a, g(X, Y)) = £(X, 2), Z =g(W, h(X)).

X =a

Y = h(a)

Z = g(a, h(a))
W=a

Yes

7-p(X, 2,2 =p(1,7, X).

No
Ulle Endriss, King’s College London 17
CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

The Anonymous Variable'

The variable _ (underscore) is called the anonymous variable. Every

occurrence of _ represents a different variable (which is why
instantiations are not reported).

7-p(C_, 2,2 =pC1, Y,).
Y =2
Yes

N\ /

Ulle Endriss, King’s College London 18

CS2LAP: Logic and Prolog 2000/2001

Introduction to Prolog

-

-

Answering Queries I

Answering a query means proving that the goal represented by that
query can be satisfied (according to the programs currently in

memory).

Recall: Programs are lists of facts and rules. A fact declares
something as being true. A rule states conditions for a statement
being true.

~

Ulle Endriss, King’s College London

CS2LAP: Logic and Prolog 2000/2001

19

Introduction to Prolog

-

-

Answering Queries (continued)'

If a goal matches with a fact, it is satisfied.

If a goal matches the head of a rule, then it is satisfied if the go
represented by the rule’s body is satisfied.

If a goal consists of several subgoals separated by commas, then
it is satisfied if all its subgoals are satisfied.

~

al

When trying to satisfy goals with built-in predicates like write/1

Prolog also performs the associated action (e.g. writing on the

screen).

/

Ulle Endriss, King’s College London

20

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

Example: Mortal Philosophers'

Consider the following argument:

All men are mortal.

Socrates is a man.

Hence, Socrates is mortal.

It has two premises and a conclusion.

N\ /

Ulle Endriss, King’s College London 21

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

Translating it into Prolog'

The two premises can be expressed as a little Prolog program:

mortal(X) :- man(X).

man(socrates).
The conclusion can then be formulated as a query:

?- mortal(socrates).
Yes

N\ /

Ulle Endriss, King’s College London 22

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

-

~

Goal Execution '

The query mortal(socrates) is made the initial goal.

Prolog looks for the first matching fact or head of rule and finds
mortal(X). Variable instantiation: X = socrates.

This variable instantiation is extended to the rule’s body, i.e.
man(X) becomes man(socrates).

New goal: man(socrates).
Success, because man(socrates) is a fact itself.

Therefore, also the initial goal succeeds.

Ulle Endriss, King’s College London 23

CS2LAP: Logic and Prolog 2000/2001 Introduction to Prolog

-

-

~

Summary: Syntax I

All Prolog expression are made up from terms (numbers, atoms,

variables, or compound terms).

Atoms start with lowercase letters or are enclosed in single
quotes; variables start with capital letters or underscore.

Prolog programs are lists of facts and rules (clauses).
Queries are submitted to the system to initiate a computation.

Some built-in predicates have special meaning.

/

Ulle Endriss, King’s College London 24

CS2LAP: Logic and Prolog 2000/2001

Introduction to Prolog

-

-

Summary: Answering Queries'

When answering a query Prolog tries to prove the corresponding

goal’s satisfiability. This is done using the rules and facts given

in a program.

A goal is executed by matching it with the first possible fact or
head of a rule. In the latter case the rule’s body becomes the

new goal.

The variable instantiations made during matching are carried
along throughout the computation and reported at the end.

Only the anonymous variable _ can be instantiated differently

whenever it occurs.

~

/

Ulle Endriss, King’s College London

CS2LAP: Logic and Prolog 2000/2001

25

List Manipulation

-

-

Lists in Prolog'

An example for a Prolog list:

[elephant, horse, donkey, dog]

Lists are enclosed in square brackets. Their elements could be any
Prolog terms (including other lists). The empty list is [].

Another example:

[a, X, [I, £X,y), 47, [a,b,c], bigger(cow,dog)]

~

Ulle Endriss, King’s College London

26

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

Internal Representation'

Internally, the list

[a, b, c]
corresponds to the term
Ca, .(Cb, .Cc, [N

That means, this is just a new notation. Internally, lists are just
compound terms with the functor . and the special atom [] as an

argument on the innermost level.

N\ /

Ulle Endriss, King’s College London 27

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

4)

The Bar Notation.

If a bar | is put just before the last term in a list, it means that this
last term denotes a sub-list. Inserting the elements before the bar at
the beginning of the sub-list yields the entire list.

For example, [a, b, c, d] is the same as [a, b | [c, dl].

N\ /

Ulle Endriss, King’s College London 28

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

-

Examples I

Extract the second element from a given list:

?7- [a, b, ¢, d, el = [_, X | _].
X=D
Yes

Make sure the first element is a 1 and get the sub-list after the

second element:

MyList = [1, 2, 3, 4, 5]
Rest = [3, 4, 5]
Yes

-

?- MyList = [1, 2, 3, 4, 5], MyList = [1, _ | Rest].

~

/

Ulle Endriss, King’s College London

29

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

-

Head and Tail I

The first element of a list is called its head. The rest of the list is
called its tail. (The empty list doesn’t have a head.)

the bar — is called the head/tail-pattern. Tt can be used to extract
head and/or tail from a list. Example:

?7- [elephant, horse, tiger, dog] = [Head | Taill.
Head = elephant

Tail = [horse, tiger, dog]

Yes

-

~

A special case of the bar notation — with exactly one element before

Ulle Endriss, King’s College London

30

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

Head and Tail (continued)'

Another example:

?- [elephant] = [X | Y].

X = elephant
Y =[]
Yes

Note: The tail of a list is always a list itself. The head of a list is an
element of that list. It doesn’t have to be a list itself, but it could be.

N\ /

Ulle Endriss, King’s College London 31

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

4 N
Appending Lists I

We want to write a predicate concat_lists/3 to concatenate two

given lists.

It should work like this:

?- concat_lists([1, 2, 3, 4], [dog, cow, tiger], L).
L =1[1, 2, 3, 4, dog, cow, tiger]
Yes

N\ /

Ulle Endriss, King’s College London 32

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

- D

The predicate concat_lists/3 is implemented recursively. The base

case is when one of the lists is empty. In every recursion step we take
off the head and use the same predicate again, with the (shorter) tail,
until we reach the base case.

concat_lists([], List, List).

concat_lists([Elem|List1], List2, [Elem|List3]) :-
concat_lists(Listl, List2, List3).

N\ /

Ulle Endriss, King’s College London 33

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

/ Do More \

Among other things, concat_lists/3 can also be used for

decomposing lists:

?7- concat_lists(Begin, End, [1, 2, 3]).

Begin = []
End = [1, 2, 3] ;
Begin = [1]

End = [2, 3] ;
Begin = [1, 2]

End = [3] ;
Begin = [1, 2, 3]
End = [] ;

N /

Ulle Endriss, King’s College London 34

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

Built-in Predicates for List Manipulation'

append/3: Append two lists (same as concat_lists/3).

?7- append([1, 2, 3], List, [1, 2, 3, 4, 5]).
List = [4, 5]
Yes

length/2: Get the length of a list.

?7- length([tiger, donkey, cow, tiger], N).

N =4

Yes
Ulle Endriss, King’s College London 35
CS2LAP: Logic and Prolog 2000/2001 List Manipulation

4 ™
Membership I

member/2: Test for membership.

?7- member(tiger, [dog, tiger, elephant, horse]).
Yes

Backtracking into member/2:

?7- member(X, [dog, tiger, elephant]).

X = dog ;

X = tiger ;

X = elephant ;
No

N\ /

Ulle Endriss, King’s College London 36

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

/ N

Consider the following program:

show(List) :-
member (Element, List),
write(Element),
nl,
fail.

Note: fail is a built-in predicate that always fails.

What happens when you submit a query like the following one?

?- show([elephant, horse, donkey, dogl).

N\ /

Ulle Endriss, King’s College London 37

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

4)

Example (continued)

?- show([elephant, horse, donkey, dogl).
elephant

horse

donkey

dog

No

The fail at the end of the rule causes Prolog to backtrack. The
subgoal member (Element, List) is the only choicepoint. In every
backtracking-cycle a new element of List is matched with the
variable Element. Eventually, the query fails (No).

N\ /

Ulle Endriss, King’s College London 38

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

4)

More Built-in Predicates'

reverse/2: Reverse the order of elements in a list.

?- reverse([1, 2, 3, 4, 5], X).
X = [5, 4’ 3, 2’ 1]
Yes

More built-in predicates can be found in the reference manual.

N\ /

Ulle Endriss, King’s College London 39

CS2LAP: Logic and Prolog 2000/2001 List Manipulation

Summary: List Manipulation'

e List notation:

— normal: [Elementl, Element2, Element3] (empty list: [1)

internal: . (Elementl, .(Element2, .(Element3, [])))

bar notation: [Elementl, Element2 | Rest]
— head/tail-pattern: [Head | Taill

e Many predicates can be implemented recursively, exploiting the
head/tail-pattern.

e Built-in predicates: append/3, member/2, length/2, ...

N\ /

Ulle Endriss, King’s College London 40

CS2LAP: Logic and Prolog 2000/2001 Arithmetic Expressions

4)

Arithmetic Expressions in Prolog'

Prolog comes with a range of predefined arithmetic functions and
operators. Something like 3 + 5, for example, is a valid Prolog term.

So, what’s happening here?

?7- 3+ 5 = 8.
No

N\ /

Ulle Endriss, King’s College London 41

CS2LAP: Logic and Prolog 2000/2001 Arithmetic Expressions

Matching v Arithmetic Evaluation'

The terms 3 + 5 and 8 do not match. In fact, when we are interested

in the sum of the numbers 3 and 5, we can’t get it through matching,
but through arithmetic evaluation.

We have to use the is-operator:

7- X is 3 + 5.

Ulle Endriss, King’s College London 42

CS2LAP: Logic and Prolog 2000/2001 Arithmetic Expressions

4 ™
The is-Operator I

The is-operator causes the term to its right to be evaluated as an

arithmetic expressions and matches the result of that evaluation with
the term on the operator’s left. (The term on the left should usually

be a variable.)
Example:

?7- Value is 3 * 4 + 5 * 6, OtherValue is Value / 11.

Value = 42

OtherValue = 3.81818

Yes
Ulle Endriss, King’s College London 43
CS2LAP: Logic and Prolog 2000/2001 Arithmetic Expressions

4)

The is-Operator (continued)

Note that the term to the right will be evaluated to an integer (i.e.
not a float) whenever possible:

?7- X is 3.5 + 4.5.
X =8
Yes

That means, a further subgoal like X = 8.0 would not succeed.

N\ /

Ulle Endriss, King’s College London 44

CS2LAP: Logic and Prolog 2000/2001 Arithmetic Expressions

-

Example: Length of a List'

Instead of using length/2 we can now write our own predicate to
compute the length of a list:

len([1, 0).

len([_ | Taill, N) :-
len(Tail, N1),
N is N1 + 1.

-

~

Ulle Endriss, King’s College London

45

CS2LAP: Logic and Prolog 2000/2001 Arithmetic Expressions

-

Functions '

used with the is-operator. See manual for details.

Examples:

7- X is max(8, 6) - sqrt(2.25) * 2.

?7- X is (47 mod 7) *x 3.
X = 125
Yes

-

Prolog provides a number of built-in arithmetic functions that can be

~

Ulle Endriss, King’s College London

46

CS2LAP: Logic and Prolog 2000/2001

Arithmetic Expressions

-

Example:

Yes

Relations '

?7- 2 * 3 > sqrt(30).

The following relations are available:

Arithmetic relations are used to compare two arithmetic values.

arithmetic equality | =\

arithmetic inequality

>

greater

>=

greater or equal

<

lower

=<

lower or equal

-

~

Ulle Endriss, King’s College London

CS2LAP: Logic and Prolog 2000/2001

47

Arithmetic Expressions

-

Recall the difference between matching and arithmetic evaluation:

?7-3+5
No
?7-3+5
Yes

=5+

Examples I

Recall the operator precedence of arithmetics:

7- 2+ 3 % 4 =

No

?7- 2+ 3 x4

Yes

-

(2 + 3) x 4.

2+ (3 % 4).

~

Ulle Endriss, King’s College London

48

CS2LAP: Logic and Prolog 2000/2001 Arithmetic Expressions

Summary: Arithmetics in Prolog'

e For logical pattern matching use =, for arithmetic evaluation use

the is-operator.

e A range of built-in arithmetic functions is available (some are

written as operators, e.g. +).

e Arithmetic expressions can be compared using arithmetic

relations like < or =:= (without is-operator).
Ulle Endriss, King’s College London 49
CS2LAP: Logic and Prolog 2000/2001 Working with Operators

4 ™
Operators in Prolog'

Operators provide a more convenient way of writing certain terms in

Prolog. For example, we can write 3 * 155 instead of *(3, 155) or
N is M + 1 instead of is(N, +(M, 1)).

Both notations are considered to be equivalent, i.e. matching works:

?- +(1000, 1) = 1000 + 1.
Yes

The objective of this lecture is to show you how you can define your
own operators in Prolog.

N\ /

Ulle Endriss, King’s College London 50

CS2LAP: Logic and Prolog 2000/2001 Working with Operators

/ Operator Precedence I \

Some operators bind stronger than others. In mathematics, for

example, * binds stronger than +. We also say, * has a lower
precedence than +.

In Prolog, operator precedences are numbers (in SWI-Prolog between
0 and 1200). The arithmetical operator *, for example, has

precedence 400, + has precedence 500.

This is why Prolog is able to compute the correct result in the
following example (i.e. not 25):

?7- X is 2 + 3 * 5.

X =17
" y
Ulle Endriss, King’s College London 51
CS2LAP: Logic and Prolog 2000/2001 Working with Operators

/ Precedence of Terms. \

The precedence of a term is defined as the precedence of its principal
operator. If the principal functor isn’t (written as) an operator or the
term is enclosed in parentheses then the precedence is defined as 0.

Examples:
e The precedence of 3 + 5 is 500.
e The precedence of 3 * 3 + 5 * 5 is also 500.
e The precedence of sqrt(3 + 5) is 0.
e The precedence of elephant is 0.

e The precedence of (3 + 5) is 0.

Ko The precedence of 3 * +(5, 6) is 400. /

Ulle Endriss, King’s College London 52

CS2LAP: Logic and Prolog 2000/2001 Working with Operators

4 ™
Operator Types I

Operators can be divided into three groups:

e infir operators, like + in Prolog
e prefix operators, like — in logic
e postfix operators, like ! in math

Is giving the type of an operator and its precedence already enough
for Prolog to fully ‘understand’ the structure of a term containing
that operator?

N\ /

Ulle Endriss, King’s College London 53

CS2LAP: Logic and Prolog 2000/2001 Working with Operators

s \

Consider the following example:

7- X is 256 - 10 - 3.

X =12
Yes
Why not 187

Obviously, precedence and type alone are not enough to fully specify
the structural properties of an operator.

N\ /

Ulle Endriss, King’s College London 54

CS2LAP: Logic and Prolog 2000/2001

Working with Operators

-

-

Operator Associativity'

operator has to occur.

We also have to specify the associativity of an operator: -, for
example, is left-associative. This is why 20 - 10 - 3 is interpreted
as (20 - 10) - 3.

In Prolog, associativity is represented by atoms like yfx. Here f
indicates the position of the operator (i.e. yfx denotes an infix
operator) and x and y indicate the positions of the arguments. A y
should be read as on this position a term with a precedence lower or
equal to that of the operator has to occur, whereas x means that on

this position a term with a precedence strictly lower to that of the

~

/

Ulle Endriss, King’s College London

CS2LAP: Logic and Prolog 2000/2001

55

Working with Operators

-

Associativity Patterns'

~

Pattern | Associativity Examples
yfx infix left-associative +, -, *
xfy infix right-associative | , (for subgoals)
xfx infix non-associative | =, is, < (i.e. no nesting)
yfy makes no sense, structuring would be impossible
fy prefix | associative
fx prefix | non-associative | - (i.e. ==5 not possible)
yf postfix | associative
xf postfix | non-associative

-

/

Ulle Endriss, King’s College London

56

CS2LAP: Logic and Prolog 2000/2001 Working with Operators

Checking Precedence and Associativity'

You can use the built-in predicate current_op/3 to check precedence

and associativity of currently defined operators.

7- current_op(Prec, Assoc, *).
Prec = 400

Assoc = yfx

Yes

?7- current_op(Prec, Assoc, is).
Prec = 700
Assoc = xfx

_ /
Ulle Endriss, King’s College London 57
CS2LAP: Logic and Prolog 2000/2001 Working with Operators

4 .)
Defining Operators I

New operators are defined using the op/3-predicate. This can be
done by submitting the operator definition as a query. Terms using
the new operator will then be equivalent to terms using the operator

as a normal functor, i.e. predicate definitions will work.

For the following example assume the big animals program has
previously been compiled:

7- op(400, xfx, is_bigger).
Yes

?7- elephant is_bigger dog.

- Y,

Ulle Endriss, King’s College London 58

CS2LAP: Logic and Prolog 2000/2001 Working with Operators

Query Execution at Compilation Time'

It is possible to write queries into a program file (using :- as a prefix

operator). They will be executed whenever the program is compiled.
If for example the file my-file.pl contains the line

:- write(’Hello, have a beautiful day!’).
this will have the following effect:

?- consult(’my-file.pl’).
Hello, have a beautiful day!
my-file.pl compiled, 0.00 sec, 224 bytes.

Yes
_
Ulle Endriss, King’s College London 59
CS2LAP: Logic and Prolog 2000/2001 Working with Operators

Operator Definition at Compilation Time'

You can do the same for operator definitions. For example, the line

:— op(200, fy, small).

inside a program file will cause a prefix operator called small to be
declared whenever the file is compiled. It can be used inside the

program itself, in other programs, and in user queries.

N\ /

Ulle Endriss, King’s College London 60

CS2LAP: Logic and Prolog 2000/2001 Working with Operators

4 ™
Summary: Operators I

e The structural properties of an operator are determined by its

precedence (a number) and its associativity pattern (like e.g.
y£x).
e Use current_op/3 to check operator definitions.

e Use op/3 to make your own operator definitions.

e Operator definitions are usually included inside a program file as

queries (using :-, i.e. like a rule without a head).
Ulle Endriss, King’s College London 61
CS2LAP: Logic and Prolog 2000/2001 Backtracking and Cuts

4 ™
Backtracking I

Choicepoints. Subgoals that can be satisfied in more than one way

provide choicepoints. Example:
., member(X, [a, b, cl),

This is a choicepoint, because the variable X could be matched with

either a, b, or c.

Backtracking. During goal execution Prolog keeps track of
choicepoints. If a particular path turns out to be a failure, it jumps
back to the most recent choicepoint and tries the next alternative.

This process is known as backtracking.

N\ /

Ulle Endriss, King’s College London 62

CS2LAP: Logic and Prolog 2000/2001

Backtracking and Cuts

-

-

solution):

permutation([],

(.

~

Given a list in the first argument, the predicate permutation/2
generates all possible permutations of that list in the second
argument through backtracking (if the user presses ; after every

permutation(List, [Element | Permutation]) :-
select(List, Element, Rest),
permutation(Rest, Permutation).

Ulle Endriss, King’s College London

CS2LAP: Logic and Prolog 2000/2001

63

Backtracking and Cuts

-

-

7- permutation(

LT T B - -
|

[1,
[1,
[2,
[2,
(3,
[3,

2,

b

-

N W, W

3]
2]
3]
1]
2]
1]

.
b
b

.
b

Example (continued) I

(1, 2, 31, X).

~

Ulle Endriss, King’s College London

64

CS2LAP: Logic and Prolog 2000/2001 Backtracking and Cuts

-

Problems with Backtracking'

Asking for alternative solutions generates wrong answers for this
predicate definition:

remove_duplicates([1, [1).

remove_duplicates([Head | Taill], Result) :-
member (Head, Tail),
remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result])
remove_duplicates(Tail, Result).

-

~

/

Ulle Endriss, King’s College London

65

CS2LAP: Logic and Prolog 2000/2001 Backtracking and Cuts

Example:

7- remove_duplicates([a, b, b, c, al, List).

List = [b, c, al ;

List = [b, b, c, al ;
List = [a, b, c, a] ;
List = [a, b, b, ¢, al ;

KNO

/ Problems with Backtracking (continued) I \

Ulle Endriss, King’s College London

66

CS2LAP: Logic and Prolog 2000/2001

Backtracking and Cuts

-

-

Introducing Cuts I

choicepoints, either because the alternatives would yield wrong
solutions (like in the previous example) or for efficiency reasons.

This is possible by using a cut, written as !. This predefined

subgoals placed before the cut inside the same rule body.

Sometimes we want to prevent Prolog from backtracking into certain

predicate always succeeds and prevents Prolog from backtracking into

~

/

Ulle Endriss, King’s College London

CS2LAP: Logic and Prolog 2000/2001

67

Backtracking and Cuts

-

-

remove_duplicates([],

The correct program for removing duplicates from a list:

(.

remove_duplicates([Head | Taill, Result) :-

member (Head, Tail),

L

remove_duplicates(Tail, Result).

remove_duplicates([Head | Taill, [Head | Result])
remove_duplicates(Tail, Result).

~

/

Ulle Endriss, King’s College London

68

CS2LAP: Logic and Prolog 2000/2001 Backtracking and Cuts

/

the current rule.

Parent goal. When executing the subgoals in a rule’s body the term
parent goal refers to the goal that caused the matching of the head of

Whenever a cut is encountered in a rule’s body, all choices
made between the time that rule’s head has been matched
with the parent goal and the time the cut is passed are final,

i.e. any choicepoints are being discarded.

-

~

Ulle Endriss, King’s College London

69

CS2LAP: Logic and Prolog 2000/2001 Backtracking and Cuts

Exercise

Using cuts (but without using negation), implement a predicate

member of the list. Make sure there are no wrong alternative
solutions. Examples:

?7- add(elephant, [dog, donkey, rabbit], List).
List = [elephant, dog, donkey, rabbit] ;
No

?- add(donkey, [dog, donkey, rabbit], List).
List = [dog, donkey, rabbit] ;
No

-

add/3 to insert an element into a list, if that element isn’t already a

~

Ulle Endriss, King’s College London

70

CS2LAP: Logic and Prolog 2000/2001

Backtracking and Cuts

-

add(Element, List, List) :-
member (Element, List), !.

add(Element, List, [Element | List]).

-

~

Ulle Endriss, King’s College London

CS2LAP: Logic and Prolog 2000/2001

71

Backtracking and Cuts

-

Problems with Cuts.

~

The predicate add/3 does not work as intended when the last

argument is already instantiated! Example:

?- add(dog, [dog, cat, bird], [dog, dog, cat, bird]).

Yes

-

/

Ulle Endriss, King’s College London

72

CS2LAP: Logic and Prolog 2000/2001 Backtracking and Cuts

Summary: Backtracking and Cuts'

e Backtracking allows Prolog to find all alternative solutions to a

given query.

e That is: Prolog provides the search strategy, not the
programmer! This is why Prolog is called a declarative language.

e Carefully placed cuts (!) can be used to prevent Prolog from
backtracking into certain subgoals. This may make a program
more efficient and/or avoid the generation of (wrong) alternative.

N\ /

Ulle Endriss, King’s College London 73

CS2LAP: Logic and Prolog 2000/2001 Negation as Failure

4 ™
Prolog’s Answers I

Consider the following Prolog program:

animal (elephant).
animal(donkey).
animal(tiger).

. and the system’s reaction to the following queries:

?- animal(donkey).
Yes

?- animal(duckbill).
No

N\ /

Ulle Endriss, King’s College London 74

CS2LAP: Logic and Prolog 2000/2001 Negation as Failure

The Closed World Assumption'

In Prolog, Yes means a statement is provably true. Consequently, No

means a statement is not provably true. This only means that such a
statement is false, if we assume that all relevant information is

present in the respective Prolog program.

For the semantics of Prolog programs we usually do make this
assumption. It is called the Closed World Assumption: we assume
that nothing outside the world described by a particular Prolog

program exists (is true).

N\ /

Ulle Endriss, King’s College London 75

CS2LAP: Logic and Prolog 2000/2001 Negation as Failure

4 ™
The \+—Operator'

If we are not interested whether a certain goal succeeds, but rather

whether it fails, we can use the \+-operator (negation). \+ Goal
succeeds, if Goal fails (and vice versa). Example:

?- \+ member(17, [1, 2, 3, 4, 5]).
Yes

This is known as negation as failure: Prolog’s negation is defined as
the failure to provide a proof.

N\ /

Ulle Endriss, King’s College London 76

CS2LAP: Logic and Prolog 2000/2001 Negation as Failure

Negation as Failure: Example'

Consider the following program:

married(peter, lucy).
married(paul, mary).
married(bob, juliet).
married(harry, geraldine).

single(Person) :-
\+ married(Person, _),

\+ married(_, Person).

N\ /

Ulle Endriss, King’s College London 77

CS2LAP: Logic and Prolog 2000/2001 Negation as Failure

Example (continued) I

After compilation Prolog reacts as follows:

?7- single(mary).
No

?- single(claudia).
Yes

In the closed world described by our Prolog program Claudia has to
be single, because she is not known to be married.

N\ /

Ulle Endriss, King’s College London 78

CS2LAP: Logic and Prolog 2000/2001 Negation as Failure

-

Where to use \+I

Note that the \+-operator can only be used to negate goals. These
are either (sub)goals in the body of a rule or (sub)goals of a query.
We cannot negate facts or the heads of rules, because this would
actually constitute a redefinition of the \+-operator (in other words
an explicit definition of Prolog’s negation, which wouldn’t be
compatible with the closed world assumption).

-

~

/

Ulle Endriss, King’s College London

79

CS2LAP: Logic and Prolog 2000/2001 Negation as Failure

Disjunction I

We already now know congjunction (comma) and negation (\+). We
also know disjunction, because several rules with the same head
correspond to a disjunction.

Disjunction can also be implemented directly within one rule by
using ; (semicolon). Example:

parent(X, Y) :- father(X, Y); mother(X, Y).
This is equivalent to the following program:

parent(X, Y) :- father(X, Y).

parent(X, Y) :- mother(X, Y).

-

~

Ulle Endriss, King’s College London

80

CS2LAP: Logic and Prolog 2000/2001 Negation as Failure

/ \

Write a Prolog program to evaluate a row of a truth table. (Assume

appropriate operator definitions have been made before.)
Examples:

7- true and false.
No

?7- true and (true and false implies true) and neg false.

Yes
Ulle Endriss, King’s College London 81
CS2LAP: Logic and Prolog 2000/2001 Negation as Failure

- N

% Falsity
false :- fail.

% Conjunction
and(A, B) :- A, B.

% Disjunction
or(A, B) :- A; B.

N\ /

Ulle Endriss, King’s College London 82

CS2LAP: Logic and Prolog 2000/2001 Negation as Failure

Solution (continued) I
% Negation

neg(A) :- \+ A.

% Implication
implies(A, B) :- A, !, B.
implies(_, _).

N\ /

Ulle Endriss, King’s College London 83

CS2LAP: Logic and Prolog 2000/2001 Negation as Failure

4)

We know that in classical logic —A is equivalent to A=-1. Similarly,
instead of using \+ in Prolog we could define our own negation
operator as follows:

neg(A) :- A, !, fail.
neg(_).

N\ /

Ulle Endriss, King’s College London 84

CS2LAP: Logic and Prolog 2000/2001 Negation as Failure

Summary: Negation and Disjunction'

Closed World Assumption: In Prolog everything that cannot be

proven from the given facts and rules is considered false.

Negation as Failure: Prolog’s negation is implemented as the

failure to provide a proof for a statement.

Goals can be negated using the \+-operator.

A disjunction of goals can be written using ; (semicolon).

(The comma between two subgoals denotes a conjunction.)

N\ /

Ulle Endriss, King’s College London 85

CS2LAP: Logic and Prolog 2000/2001 Prolog Programs as Logic Formulas

4 N

Logic and Prolog'

Today we shall see how Prolog programs can be interpreted as sets of
logic formulas. In fact, when processing a query, Prolog is actually
applying the rules of a logical deduction system similar to the

goal-directed calculus.

N\ /

Ulle Endriss, King’s College London 86

CS2LAP: Logic and Prolog 2000/2001

Prolog Programs as Logic Formulas

-

Correspondence I

Prolog First-order Logic

predicate predicate

argument term

variable universally quantified variable
atom constant /function/predicate symbol
sequence of subgoals | conjunction

i- implication (other way round)

-

~

Ulle Endriss, King’s College London

CS2LAP: Logic and Prolog 2000/2001

87

Prolog Programs as Logic Formulas

-

is_bigger(X, Y) :-

-

What is the logical meaning of this program?

bigger (elephant, horse).
bigger(horse, donkey).

bigger(X, Y).

is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).

~

/

Ulle Endriss, King’s College London

88

CS2LAP: Logic and Prolog 2000/2001 Prolog Programs as Logic Formulas

4 N

Answer

{ bigger(elephant, horse),
bigger (horse, donkey),
Vo Vy.(bigger(z,y) = is_bigger(z,y)),
Va.Vy.Vz.(bigger(x, z) Ais_bigger(z,y) = is_bigger(z,y)) }

N\ /

Ulle Endriss, King’s College London 89

CS2LAP: Logic and Prolog 2000/2001 Prolog Programs as Logic Formulas

4)

Translation of Programs'

Predicates remain the same (syntactically).

e Commas separating subgoals become A.
e :- becomes = and the order of head and body is changed.

e Every variable is bound to a universal quantifier (V).

N\ /

Ulle Endriss, King’s College London 90

CS2LAP: Logic and Prolog 2000/2001 Prolog Programs as Logic Formulas

Translation of Queries'

Queries are translated like rules; the ‘empty head’ is translated as L.

This corresponds to the negation of the goal whose provability we try
to test when submitting a query to Prolog.

Logically speaking, instead of deriving the goal itself, we try to prove
that adding the negation of the goal to the program would make it
inconsistent:

PA=>1L F L if P A

N\ /

Ulle Endriss, King’s College London 91

CS2LAP: Logic and Prolog 2000/2001 Prolog Programs as Logic Formulas

4 N

The query
?7- is_bigger(elephant, X), is_bigger(X, donkey).
corresponds to the following first-order formula:

V. (is_bigger(elephant, x) A is_bigger(x,donkey) = L)

N\ /

Ulle Endriss, King’s College London 92

CS2LAP: Logic and Prolog 2000/2001 Prolog Programs as Logic Formulas

4 ™
Horn Formulas I

The formulas we get when translating all have the same structure:

Al/\AQ/\"'/\An:>B

Such a formula can be rewritten as follows:
Al/\Ag/\"'/\AniB
(A NAyN---NA,) V B =
_|A1\/_IA2\/"'\/_|An\/B

Hence, formulas obtained from translating Prolog clauses can always

/

Ulle Endriss, King’s College London 93

be rewritten as equivalent Horn formulas (disjunctions of literals

Qith at most one positive literal).

CS2LAP: Logic and Prolog 2000/2001 Prolog Programs as Logic Formulas

4 N
Resolution I

The search tree built up by Prolog when trying to answer a query

corresponds to a logic proof using resolution, which is a very efficient
deduction system for Horn formulas. A short introduction can be
found in the notes; for more details refer to theoretically oriented
books on logic programming.

It is also possible to think of a Prolog goal execution as a
goal-directed proof in first-order logic. The data formulas in such a
proof would represent a list of clauses and facts, and a goal formula
would correspond to a Prolog query.

N\ /

Ulle Endriss, King’s College London 94

CS2LAP: Logic and Prolog 2000/2001 Prolog Programs as Logic Formulas

Summary: Logic Foundations'

e Prolog programs correspond to sets of first-order logic (Horn)

formulas.

e During translation, : - becomes an implication (from right to
left), commas between subgoals correspond to conjunctions, and
all variables need to be universally quantified. Queries become
(universally quantified) implications with | in the consequent.

e Prolog’s search to satisfy a query corresponds to a logical proof.
In principle, any deduction calculus could be used. Historically,
Prolog is based on resolution, which is particularly suited as it is
tailored for Horn formulas.

N\ /

Ulle Endriss, King’s College London 95

