
RE and FA APPLICATION: SCANNERS

Groups chars into tokens, removes comments

and “white space”, saves text where needed (e.g.

identifiers, strings, numbers), adds line or col

numbers for better err. msgs.

Ad Hoc Code, often used in production, fast,

efficient.

FA or RE → FA: easy to write code from

automatically, in fact can automate much of the

process.

Code: handwritten: generate switch (case, goto)

statements, as seen rather earlier.

OR: automatically generated: use tables and a

driver (as in lex/flex.) Or maybe produce tables

for handwritten driver.

1

NESTED CASE SCANNING

Outer cases covers FA states. Inner cases cover

transitions out of each state: most go to new

state, some return with current token.

Two additions to pure FA: keywords and

“peek-aheads” (e.g. for 3.14 vs 3..14 in Pascal).

Key (reserved) words look like identifiers. Telling

them apart with scanner takes lots of states. So

easiest to depart from formalism, ignore

distinction until token is generated, then look it

up (hash or trie) to see if it’s a keyword.

We’ve seen the FORTRAN peek-ahead problem

DO100I=1.10. If not too common, can treat these

problems as special case hacks. But some

languages just need more lookahead: scanner

assumes longer token possible but remembers

shorter ones along the way, buffers chars. Good

syntax design can minimize these complications!

2

TABLE-DRIVEN SCANNING

Represent FA by it’s two-dimensional (state and

character) transition table. Table entries say

whether to transition to new state and if so to

which one, whether to return a token or error.

A second table indicates for each state whether

we might be at the end of a token (and if so

which): this table – when pass state that might

have been end of a token can back up if hit error

later on.

Other issues: Lexical error handling (often toss

invalid token, skip to possible start of next, and

keep scanning, thus punting to the parser for bad

syntax. Pragmas are significant comments that

control or hint to compiler (turn profiling on, put

variable in register, routine not recursive...).

3

SMALL TABLE-DRIVEN E.G.

letter → (a | b | . . . | z | A | . . . | Z)

digit → (0 | 1 | . . .8 | 9)

id → letter(letter | digit)∗

4

TABLES

char-class a-z A-Z 0-9 other

VALUE letter letter digit other

next_state CLASS S0 S1 S2 S3

letter S1 S1 -- --

digit S3 S1 -- --

other S3 S2 -- --

5

