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Abstract 
 This project investigated segmentation and recognition of characters from a 
Rochester Flag as visual behaviors for landmark recognition and nametag reading.  We 
successfully segmented and correctly classified the “ROCHESTER” characters from 
arbitrary images of the flag. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Introduction 

Optical Character Recognition (OCR) has as its objective to match a sequence of 
input images to some sequence of characters in a given alphabet.  Some of the harder 
problems in OCR include recognizing damaged or fuzzy text, text in the presence of 
heavy noise, multi- font text, and unconstrained hand printed characters (Mori 4).  This 
project deals with taking a 320x240 color image, segmenting the text from the image, and 
classifying each letter in an OCR fashion.  We have built three applications that 
demonstrate this process.  There is a program that takes as input an image of the 
Rochester flag, and outputs the letters of the word “Rochester” in separate images.  
Another program takes the segmented images as input and trains the classifier.  It logs 
this training data to a text file.  The third program verifies the output of the trained 
classifier on a new set of letter images.   

Our hope is that the classifier and segmenter can eventually be intertwined to read 
nametags on a live image stream from a robotic agent.  This project, however, deals only 
with a subset of the nametag reading problem.  The goal is to take a picture of a 
University of Rochester banner and segment the letters of the word Rochester from it (see 
Figure 1). 

 
Figure 1 

 
Segmentation Techniques 
 The purpose of our character segmentation utility is to produce rotation and scale 
invariant images of the characters in a specific word from the Rochester flag.  The images 
are binary, and 20x20 pixels in size.   
 The character segmentation techniques used to read “R O C H E S T E R” from 
the U. R. flag rely on a number of structural invariants.  A mobile robot will be able to 
make these assumptions about the structure of the flag during the AAAI contest because 
the rules allow our team to place it at the hors d’oeuvres refill station.  The indoor 
environment will allow us to prevent motion of the flag and ensure that it remains flat.  
A-priori knowledge of the flag’s two-dimensional structure allows us to design simple 
reactive behaviors that can segment the desired characters. 
 The flag contains many text regions at varying orientations and scales.  We have 
chosen to read the large collinear letters near the bottom.  These characters are written in 
solid yellow material against the dark blue background, and each occupies nearly 9 
square inches.  Our text segmentation utility relies on a signal from the camera that can 



image these characters to an area of at least 20 x 20 pixels.  This resolution constraint was 
required because the character classifier utility expects images of size 20 x 20. 
 
 
Scale Invariance 
 

We investigated stretching segmented characters that were smaller than 20 pixels 
in either dimension, but the interpolated signal was intolerably noisy.  We found this to 
be the case for any of the interpolation methods in the Intel Image Processing Library 
(nearest neighbor, linear, bi- linear, or cubic).  If characters are imaged at a size smaller 
than 20 x 20, our system simply copies them into the upper left corner of a black 20 x 20 
image.  Large numbers of training examples could possibly allow for recognition even in 
violation of this resolution constraint. 

Our long-term solution to this resolution constraint in nametag reading will be to 
use a higher resolution digitizer.  Work in this project so far has used a Hauppage Win-
TV USB digitizer.  An example image of the flag digitized with the Hauppage is shown 
in figure 1.  Future character recognition work will be done using a Dazzle Hollywood 
DV Bridge.  This digitizer uses a FireWire connection to achieve 640x480 pixel images 
at NTSC frame rates.   

 
 

Character Segmentation 
 

Segmentation of individual letters is achieved through a formalism that we call 
the Fuzzy Spike.  We define a Spike to be a continuous one-dimensional region of non-
zero histogram values from a one-dimensional histogram.  A Fuzzy Spike is also a group 
of histogram values, but intermittent regions of zeros are allowed.  When labeling the 
clusters of non-zero values, we set a limit on the number of continuous zeros allowed 
between 1s of a single spike.  When segmenting letters, we sum down the columns of the 
image into a 1-D histogram.  We also sum across the rows of the image into another 1-D 
histogram.  We apply the fuzzy spike finder to these histograms to segment each letter.  
Figures 2 through 9 show the results of applying the fuzzy spike technique to segment 
letters. 

 

         
 

Figures 2 through 9 



 
 
In order to find the “R O C H E S T E R” region of text at the bottom of the flag, 

we assume that the large, round Meliora symbol at center of the flag is the largest vertical 
Fuzzy Spike.  The vertical location of the text that we wish to read can be found by 
investigation of the next vertical Fuzzy Spike below this large round symbol.  Using the 
vertical location, we can then obtain a horizontal Fuzzy Spike of the entire word.  The red 
spike in Figure 10 corresponds to the Meliora symbol.  The green spike below it is the 
desired Rochester label. 

 

 
Figure 10 

 
Rotation Invariance 

 
The angle between the line of underscore for this word and the x-axis is then 

calculated.  We take the arctangent of the slope (deltaY / deltaX).  This angle is used to 
rotate the entire image about the center of the word (shown in Figure 11).  After rotation, 
each character in the word is upright (Figure 12).  This allows the character classification 
to achieve invariance to rotation.  For this technique to be valid, the text being recognized 
must share a common line of underscore.   

 

  
Figure 11     Figure 12 

 
Perspective Invariance 
 



We investigated doing a perspective warp of the image in order to make the 
classification invariant to camera location in the world.  Figures 13 and 14 show the 
quadrangle and region of interest used for the warp.  Figures 15 and 16 show a text image 
and the resulting warped text image.  Achieving the correct quadrangle for the text 
proved to be quite difficult.  Figure 16 demonstrates the problem of an incorrect 
quadrangle, and the resulting loss of data.  We will rely on robust training data to achieve 
perspective invariance.  This is not a problem if the camera images the poster from a 
fairly constrained set of locations. 
 

   
Figure 13     Figure 14 

 
 

  
Figure 15         Figure 16    

 
Classifier: 

The purpose of the classifier is to take a 20x20 pixel binary image and classify it 
as a letter in the English alphabet.  This particular classifier needs to be trained on each 
letter that will be recognized.  This process requires 20x20 pixel binary images.  It uses 
vector-clustering techniques and ideas taken from vector calculus and Mori (1-39).  Mori 
mentions the use of line crossings as attributes in classification.  This classifier substitutes 
histogram techniques for line crossings. 

The classifier works by taking an image and extracting some number of attributes 
from that image.  An array of these attributes is interpreted as a vector, in the 
mathematical sense.  This vector has a dimensionality that varies with the number of 
attributes garnered from the image.  We implemented classification using 40 spatial 
attributes, and 6 spatial moments.   

To analyze the closeness of one vector to another, we calculate the distance 
between the two vectors.  Distance is measured by ||v1 – v2||, the norm of the difference 
of v1 and v2.  This distance is useful for classifying a particular letter either as one of the 
training set, or as of an unknown type.  In this case, there is a mean vector that describes 
each letter in the alphabet.  For any new images that need to be classified, we find the 



distance from the vector that describes this new image to each mean vector in the 
alphabet.  The classifier chooses the smallest distance, and the associated letter, as its 
result.  A threshold can be used with the vector distance to classify an example as outside 
of the training set.  Thus, there are two parts to classification: training and retrieving. 

 
Training: 

To train this classifier, an arbitrary number of examples for each letter are taken 
to be the training set for the letter.  Each example this letter’s training set is given to a 
function named trainWhichCharacterCluster().  This function takes in an image and a 
letter.  The function is run on all of the examples in the training set, and logs the vector 
obtained from the image into a cluster of vectors.  This cluster of vectors describes all of 
the examples in the training set for some letter, and is written into a configuration text-
file.   

Each cluster of vectors is analyzed to find a mean vector for the particular letter.  
For example if we have vectors v1,v2… vN, then the mean vector would be: v1 + v2 + 
… vN / n. 
 
Retrieving: 
 To retrieve the identity of a new image we take the distance from each mean 
vector to the input image vector (as described above).  A distance is computed to each 
mean-vector of the various letters.  The letter that yields the smallest distance is used to 
classify the image.  If the smallest distance exceeds a threshold, then the image is 
declared to belong outside the training set. 
 
Attributes: 
 Chart 1 shows the sum along each pixel-row of the 20x20 image.  Chart 2 shows 
the sum along each pixel-column of the image.  These form the first 40 attributes used in 
classification.  Chart 3 shows the first through third spatial moments for the training set.  
These form the last 6 attributes used in classification. 



Horizontal  Histogram Data for Different Characters
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Chart 1 

 

V e r t i c a l  H i s t o g r a m  D a t a  f o r  D i f f e r e n t  C h a r a c t e r s
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Chart 2 
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Chart 3 

 
Results 
  
Segmentation 

The segmentation of the characters from the Rochester flag was successful in 
every example image we ran it on.  Some examples of the segmentation can be seen in 
figures 2 through 9.  Our results will improve even more when we can mount the flag in a 
glass frame.  Since the flag was taped to the wall, some of the images appear incorrectly 
rotated.  This did not appear to negatively impact classification. 

 
Classifier 
 The classifier worked on every example case that we tried.  It correctly classified 
the characters in the set {R, O, C, H, E, S, T}.  The ability to recognize the banner letters 
is more will lead to more robust landmark detection than color alone. 
 
Future Work 
 
Landmark Detection 

Our intent is for the University of Rochester “Mabel” robot to recognize the 
poster as a landmark during the Robot Host competition.  The utilities currently work 
from a bitmap stored on disk, and log the digitized images into a database of binary 
20x20 images.  All the samples of each letter are stored in their own directory.  The 
recognizer utility currently fetches these images from the database when producing a 
classification configuration file for a given set of characters.   

 



 
Reactive Behaviors 

 
We will need to rework our training utilities into a set of visual behaviors so that 

they can be integrated into the MabelVision system.  When we create these vision 
behaviors, we will most likely make use of online training.  A human operator can 
supervise the character classification training using our off-board java parameter 
adjustment program.  Supervised training through these behaviors will allow us to 
automate the classifier training process.  Thus we will be able to quickly re-train the 
system in new environments if needed. 

We will most likely make use of wheel encoding information to navigate the 
robot into the vicinity of the poster.  Then, we will pan the camera until a large blue 
region with some yellow is detected.  We will pan, tilt, and zoom the camera to an 
orientation similar to Figure 1.  Finally, we will run the segmentation and classification 
utilities created in this project on a digitized frame from this viewpoint. 
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