
Comprehensive Examination and Answers
Artificial Intelligence

May 11, 2006

Work each question in a separate bluebook. Write the problem number and your PIN on the bluebooks.

There are 7 problems. Answer any 6 problems. No reference materials.

Problem 1: Resolution and answer extraction

In a theatrical domain, where comedy and drama are types of play:

Every drama is a play.

In every drama there is a villain.

Every villain in a drama gets killed.

No comedy has a villain in it who gets killed.

Othello is a drama.

A. Formalize these propositions as FOL formulas using (only) the predicates P (x) for “x is a play”,
C(x) for “x is a comedy”, D(x) for “x is a drama”, V (x, y) for “x is villain in y”, K(x) for “x gets
killed”, and O for “Othello”.

B. Convert the formulas to clause form and use resolution with answer extraction to answer the question,

What play is not a comedy?

Be sure to indicate at each step which literals of which clauses you are resolving.

C. Is your proof a unit proof? a set of support proof? an ordered proof? Why or why not?

D. Factor P(A) ∨P(x) ∨P(f(x)) in all possible ways. (N.B.: Wrong factors lose marks!)

E. Paramodulate f(x) = A ∨P(x) into Q(f(y)) in all possible ways.

——————- Problem 1 Answers

A: 1. ∀x. D(x) ⇒P(x)
2. ∀x. D(x) ⇒∃y. V(y,x)
3. ∀x.∀y. (D(x) ∧V(y,x)) ⇒K(y)
4. ∀x.∀y. (C(x) ∧V(y,x)) ⇒¬K(y)
5. D(O)

B: Q: ∃x. P(x) ∧Nt C(x)
Denial: ∀x.¬P(x) ∨C(x)

1. ¬D(x) ∨P(x)
2. ¬D(x) ∨V(f(x),x) f(x) is a Skolem function
3. ¬D(x) ∨¬V(y,x) ∨K(y)
4. ¬C(x) ∨¬V(y,x) ∨¬K(y)
5. D(O)
6. ¬P(x) ∨C(x) ∨Ans(x) denial, with answer predicate

7. P(O) r[1a,5]
8. V(f(O),O) r[2a,5]
9. ¬V(y,O) ∨K(y) r[3a,5]
10. K(f(O)) r[8,9a]
11. ¬C(x) ∨¬V(f(O),x) r[4c,10]
12. ¬C(O) r[8,11b]
13. ¬P(O) ∨Ans(O) r[12,6b]
14. 2 ∨Ans(O) r[7,13]

Thus, Othello is a play that is not a comedy.

C: The above proof is
– a unit proof, as each step uses a unit clause;
– not a set-of-support proof, as steps 7-12 don’t use the S of S ({6}); – not an ordered proof, as steps
11-13 use non-initial literals

D: f[a,b]: P(A) ∨P(f(A));
that’s all – no other factors are possible

E: 1. f(x) = A ∨P(x)
2. Q(f(y))

p[1aL,2]: Q(A) ∨P(x)
p[1aL,2(subterm)]: Q(f(A)) ∨P(x)
p[1aR,2]: Q(f(f(x)) ∨P(x)

Problem 2: Action and Planning

A: If the server is nearby and I wave, the server will attend to me.
If the server is attending to me and I request item x, I will (soon) have x.

In the initial state the server is nearby: we want to achieve the goal of having the ketchup, K.

Use the situation calculus and answer extraction to find a plan to achieve this goal. Perform reso-

lutions to simulate a regression search, i.e., from the goal backward. Use a simple representation as
follows:
N(s) means that the server is nearby in state s;
A(s) means that the server is attending to you in state s;
H(x, s) means that you have item x in state s;
do(a, s) is the state resulting from doing action a in state s;
W is the action of waving (to the server);
r(x) is the action of requesting item x; and
K is the ketchup.

For each resolution step, clearly indicate which literals of which clauses you are resolving.

B: Imagine that you also want to have mustard M, which you could obtain with a separate request
(after the request for ketchup). With the axioms you have used so far, would you be able to derive
a plan leading to a state in which you have both the ketchup and the mustard? If so, indicate in
words (without getting into the actual proof) how this would go. If not, say why not (again, without
getting into formal details).

2

C: In a STRIPS encoding of this problem (which you don’t need to give) would there be any difficulties
about the “ketchup and mustard” problem mentioned in (b)? Why or why not?

Finally, answer just one of parts D or E:

D: What are the advantages of methods based on planning graphs (Blum & Furst ’95) or on SAT-solving
(Kautz & Selman’s SATPLAN ’96) (where you should just consider one of these two approaches),
compared with earlier planners that performed regression searches, seeking a “flawless” plan (e.g.,
SNLP- or POP-style planners)?

E: What is advantageous about hierarchical planning, often called “hierarchical task network (HTN)
planning”? (You may remember this idea from Sacerdoti’s early planner NOAH, as well as various
later systems like PRS and RAP.)

Problem 2 Answers

A: 1. ¬N(s) ∨A(do(W,s))
2. ¬A(s) ∨H(x,do(r(x),s))
3. N(S0)

Goal: ∃s H(K,s)
Denial: ∀s¬H(K,s)

4. ¬H(K,s) ∨Ans(s)

5. ¬A(s) ∨Ans(do(r(K),s)) r[4,2b]
6. ¬N(s) ∨Ans(do(r(K),do(W,s))) r[5,1b]
7. 2 ∨Ans(do(r(K),do(W,S0))) r[3,6]

Thus the plan is to wave to the server and to request the ketchup.

B: With the axioms so far, we couldn’t prove the existence of a state in which we have both K and
M, because there is no assurance that when we wave to the server again, or request the mustard,
the ketchup will “stay put”; this is the frame problem. So we would need frame axioms saying that
during waving and requesting I do not cease to “have” whatever I had before; or explanation closure
axioms saying that the only actions that falsify a “have”-relation are, say, a taking-away action or a
using-up action.

C: In a STRIPS encoding the frame problem is dealt with by the STRIPS assumption, i.e., that the
only things that change are those explitly changed by the operators that are applied. So once I have
K, I will continue to have it, as long as I apply no operator whose result is that I cease to have it.

D: These methods are faster because in effect they combine forward and backward search. GRAPHPLAN
makes a forward sweep that finds all the facts that might be true at a given time step in a plan, and
all the operators that might be applicable. This is followed by a backward search (from a state in
which the goal might be true, and this search is greatly constrained by the initial forward sweep (and
by incompatibilities of certain properties and certain actions with one another). SATPLAN performs
a greedy search for a sequence of actions (operator instances) leading to the goal, by iteratively trying
to maximize the number of true formulas among the set of formulas that describe the effects of the
possible actions at each time point, and what conditions persist. The boolean variable whose value is
“flipped” at any point could be concerned with an action or state at any time point in the emerging
plan.

3

E: The advantage of hierarchical planning is that the “combinatorics” of a high-level plan are much more
manageable than those of a detailed plan (as a few high-level steps will achieve the goal). Hence, once
a high-level plan has been constructed, then – assuming it is workable – the lower-level planning can
also be broken into manageable chunks, each chunk corresponding to a step of the high-level plan.

Problem 3: Games

For A and B, consider a three-person zero-sum game of perfect information.

A: Can the minimax algorithm be modified to apply to this situation? If so how, and if not why not?

B: Will α − β pruning work in this situation? If so how, and if not why not?

C: Now consider two-person games. It seems reasonable in a zero-sum game to represent MIN’s and
MAX’s evaluation of a particular position as negatives of one another. How does this simplification
affect the implementation of the α − β algorithm?

D: If we believe the fortunes of a game (say chess) are not going to swing wildly in a single move, why do
we initialize α and β to −∞ and +∞? Would it not make more sense to initialize them to a smaller
window of possible evaluation scores and thus not consider any “silly” moves? Or is this itself a silly
idea? One worry might be that we have a search failure, when no moves evaluating into this window
are found...what should we do then?

Answer Problem 3: Games

A: Yes. let X,Y.Z be the players. Worst case, X assumes Y and Z are colluding against him. The game
tree’s levels are for moves by XYZXYZ... X lumps the YZ move-pairs into one logical move and minimaxes
against that “super-opponent”.

B: Definitely. There is nothing different between the super-opponent YZ and a single opponent. α − β

pruning works exactly the same way in this zero-sum situation as it always did, using the worst that Y
and Z colluding together can do to X to generate the β cutoffs.

C: This simplification to minimax (Negamax) means the α− β can change from a co-routine organization
(corresponding to looking at things from MIN’s and MAX’s point of view alternately) to a simple recursive
call with α and β swapped and their signs reversed on each call (corresponding to ’flipping the board’).

D: Good idea: In fact, if α and β are set so close together that the search is guaranteed to fail (but return
a bound on the possible solution) it’s called the Scout algorithm, due to Judea Pearl. Combined with
NegaMax it yields NegaScout, which is used by Deep Blue. The trick is that the α − β algorithm returns
a “best value so far” that gives information about bounds. Starting out with tighter bounds means that
there will be more pruning, but still information will be returned. If everything is pruned away, then the
interval (called an “aspiration window”) must be widened and the search performed again. Scout is really
only effective if the nodes are explored in order of their goodness, as when one gets the maximum bang
out of α − β.

Problem 4: Bayes Nets

Fig. 1 shows the canonical textbook Bayes Net.

A: What is the probability that D is true given E is true?

4

A B

C

D E
P(E|C)

P(C|A,B)

P(B)P(A)

P(D|C)

Figure 1: Standard Bayes Net example.

B: A program to produce such a Bayes net would be given nodes in some order. Considering only
the predecessor nodes (those earlier in the node order, which it has seen already), it must choose
parents for the current node N such that N is conditionally independent of its predecessors in the
node ordering, given those parents. The tree in Fig. 1 came from submitting A, B, C, D, E in that
order to such an algorithm. In Topsy-Turvy Land, inhabitants tend to think in terms of diagnostic
rather than causal evidence, and so they submit nodes in this order: E, D, C, B, A. What Bayes net
structure results? To get started: E has no predecessors, hence no parents. From Fig. 1 we see that
if E is true that has something to do with C being true, which in turn affects the probability of D
being true, so D needs E as parent. (Of course the algorithm does not have Fig. 1 to work from, but
it must know the dependencies reflected in Fig. 1 to do its job, so you can safely pretend Fig. 1 is
available.) You take it from here.

C: A “Direct Sampling” process computes the joint probability density function of P (A, B, C, D, E) in
such a network when there is no associated evidence. What is the direct sampling algorithm?

D: Suppose we want to use sampling but also have some evidence event e with which our samples must
be consistent. This leads to “rejection sampling” to compute the estimated P (X = x | e): describe
the rejection sampling algorithm.

Answer Problem 4: Bayes Nets

A:
P (d | e) = αP (d, e) = α

∑

A,B,C

P (A, B, C, d, e)

= α
∑

A,B,C

∏

P (xi | parent(xi) = α
∑

a

∑

b

∑

c

P (a)P (b)P (c | a, b)P (d | c)P (e | c)

B: Fig. 2. See Russell and Norvig pp 496-498.

C: generate samples from the joint distribution as follows, until you have enough to have confidence you
know the joint distribution as accurately as you want. Randomly pick a value for root nodes from their
prior distributions, then compute the values of their children from those values and the connecting CPTs.
Repeat recursively until all random variables have values. Add sample in to joint PDF totals and iterate.

D: Just do direct sampling but toss out any samples with random variable values inconsistent with known
evidence. This exacerbates the problem of needing lots of samples to get at unlikely events.

Problem 5 and Embedded Answers: Neural Nets

Consider a multilayer perceptron with a single hidden layer: each output node zj reports an activation

zj = g(aj)

5

D
C

E

B
A

Figure 2: With this order we need more links, hence more CPT numbers.

where g is some function of the weighted sum of inputs from the hidden layer:

aj =
∑

k

wjkzk

Each hidden node depends similarly on the input nodes zi:

zk = g(ak)

ak =
∑

i

wkizi

We wish to compute the update to a weight wki from input node i to hidden node k given the error at
output node j. Beginning with the chain rule

∂En
j

∂wki

=
∂En

j

∂aj

∂aj

∂wki

let us assume we have already computed a value:

δj =
∂En

j

∂aj

A: Show that the update can be expressed as a product of the input node value and a function of only

the hidden node:
∂En

j

∂wki

= δkzi

by deriving a formula for δk.

6

Answer:

∂aj

∂wki

=
∂

∂wki

∑

k′

zk′wjk′

= wjk

∂

∂wki

zk

= wjk

∂

∂wki

g

(

∑

i′

wki′zi

)

= wjk g′(ak)
∂

∂wki

∑

i′

wki′zi

= wjk g′(ak) zi

δk = δjwjkg
′(ak)

B: The derivation above only uses one node from the output layaer. Supposing the network output and
the desired labels from the training data are vectors, how do you train the net?

Answer: Assuming an additive error function En =
∑

j En
j ,

∂En

∂wki

=
∑

j

∂En
j

∂wki

δk =
∑

j

δjwjkg
′(ak)

C: Describe in words the difference between online and batch training for neural networks.

Answer: Online: adjust weights after each data item. Batch: accu mulate updates over
entire dataset. Both: iterate over data until sati sfied.

D: What factors are relevant in choosing a good activation function g?

Answer: Monotonic, easily differentiable, probably should be boun ded from above and
below.

Problem 6 and Embedded Answer: Probability

A: Show that E[(X −E[X])2] = E[X2]− (E[X])2, with E(.) the expectation (expected-value) function.

Answer:

E[(X − E[X])2] = E
[

X2 − 2XE[X] + (E[X])2
]

= E[X2] − 2E[X]E[X] + (E[X])2

= E[X2] − (E[X])2

B: The above quantity is called Var(X). Give an example of two random variables X and Y such that
Var(X + Y) 6= Var(X) + Var(Y).

Answer: X = Y , X not constant

7

C: Give an example of two random variables X and Y such that Var(X + Y) = Var(X) + Var(Y).

Answer: P (X, Y) = P (X)P (Y)

D: Prove
P (X, Y | e) = P (X | Y, e)P (Y | e).

Answer:

Following is equal to above term by term, and LHS = RHS, QED.

P (X, Y, e)

P (e)
=

P (X, Y, e)

P (Y, e)

P (Y, e)

P (e)
.

E: Prove

P (A | B, C) =
P (B | A, C)P (A | C)

P (B | C)

Answer:

LHS =
P (A, B, C)

P (B, C)
.

RHS =
P (B | A, C)P (A | C)P (C)

P (B | C)P (C)

=
P (B | A, C)P (A, C)

P (B, C)
= LHS,

QED.

Problem 7. Default Reasoning

A: One of the earliest proposals for implementing non-monotonic reasoning was within the framework of
inheritance networks. In addition to the “subset” links and “element-of” links customary in inheri-
tance networks, these contained default links and negated default links. Illustrate the representations
of the classical “Tweety” and “Nixon diamond” examples as default inheritance networks (i.e., birds
generally fly, penguins generally don’t, and Tweety is a bird, specifically a penguin; and Quakers are
generally pacifists, Republicans are generally not pacifists, and Nixon is a Quaker and a Republican).
Explain your notation, especially what your link types or labels mean. Then explain what difficulties
are encountered in attempting to use such networks in a consistent way, and say what sorts of ap-
proaches have been proposed for addressing the difficulties. (Mention of “credulous” and “skeptical”
inheritance might be appropriate.)

B: Default Logic (DL) puts the content into inference rules: a new class of rules is introduced:

A : MB

C
,

or “if A is provable and it is consistent to assume B then conclude C”. Applying these rules leads to
“extensions” of our knowledge – though they can also lead to inconsistency.

Give an example of defaults that will create an inconsistency.

Then consider the following defaults and fact:

8

BaseballP layer(x) : MHeight(x, 6 − 1)

Height(x, 6 − 1)

Pitcher(Dizzy)

and assume that some reasonable ontological hierarchy is given as well. Explain (on general principles)
why the given defaults will not lead to inconsistency.

However, we do get multiple extensions; explain. How could they be avoided in the example?

Other problems with default logic concern (i) computation with the M operator, and (ii) the status
of defaults as “assertable knowledge”; explain.

Answer Problem 7: Default Reasoning

______e___________ This transitive e-edge might not be

/ \ included

/ _\|

Tweety --e--> Penguin --s--> Bird ---->__Fly

\ /|

________not______/

__Republican

/| \

e \not

/ _\|

Nixon __Pacifist

\ /|

e /

\ /

_\| /

Quaker

e: member-of

s: subset-of

unlabeled: generally have the property

not: generally do not have the property

If we sanction transitive inference we can conclude defeasibly that Tweety doesn’t fly (via the lower path)
or that he does (via the middle or upper path). Similarly in the Nixon diamond the upper path sanctions
the defeasible conclusion that Nixon is a pacifist, while the lower path sanctions the opposite defeasible
conclusion. The “credulous” attitude always sanctions as many conclusions as possible, and would thus
arbitrarily pick one or the other possible conclusion in the two examples. The ”skeptical” attitude refuses
to commit to a default conclusion if it conflicts with another default conclusion. Thus no conclusion about
flying or pacifism would be reached in the examples.

More sophisticated methods try to find a balance between the two attitudes. In particular, one principle
is that more specific information wins over less specific information. Thus the lower pathway in the
Tweety example ”wins” – Tweety doesn’t fly (as intuitions demands). Another principle is that a pathway
providing a default conclusion may be neutralized by another pathway that defeats one of the nodes in

9

the pathway, so that the conclusion of the defeated pathway can no longer conflict with the conclusion of
another (otherwise undefeated) one. These methods still leave the question of Nixon’s pacifism open, i.e.,
they remain skeptical of both conclusions because they conflict.

B. An example of defaults that create an inconsistency is

True : MB

¬B
,

True : M¬B

B
,

where True is the always-true formula (or we could simply not have a premise at all).

The given “baseball defaults” don’t lead to inconsistency because they are normal defaults, i.e., the for-
mula in the consistency test is the same as the conclusion, and such defaults are known not to introduce
inconsistency into a consistent KB.

We get multiple extensions (much as in the A-examples) because, assuming the ontology implies Dizzy is
an adult male and a baseball player, we can conclude from the first default that he is of height 6-1, after
which we can no longer apply the second default (assuming that the KB also implies that being of height
6-1 is incompatible with being of height 5-10). Conversely, if we apply the second rule first, we conclude
Dizzy is of height 5-10. One way to avoid the latter extension would be to require more specific rules to
be applied first (again much as in A); another would be to refine the second rule to say

Adult − Male(x) : M [Height(x, 5 − 10) ∧ ¬Basebell − Player(x)]

Height(x, 5 − 10

which would make it inapplicable to Dizzy.

A computational problem with the M operator is that consistency is undecidable in FOL, so the consistency
check is potentially nonterminating. A problem with the status of defaults is that claims like “Baseball

players are normally 6-1 in height” are treated as sentences that can be true of false in ordinary language,
but defaults are rules, and therefore cannot be treated as true or false, and cannot be inferred. For instance,
we cannot model the inference “Baseball players are normally 6-1 in height, and soccer players are normally

of the same height as baseball players; therefore, soccer players are normally 6-1 in height.”

10

