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The Gaussian Reduction Project (M A T L A B) 

Introduction 

This project involved writing a function in MATLAB to solve a system of linear 

equations using Gaussian reduction. There is a second version additionally using partial pivoting 

for comparison with the first one using direct Gaussian reduction. Through the project, it will run 

both programs on correctness, timing and distribution tests to compare twp programs (one 

without partial pivoting and one with partial pivoting) on different sizes. Though the plotting the 

result from the tests, we can also what percentage overhead adding pivoting entails and the 

relationship between the running time on an ! " ! system and !$#as well. It will also run both 

the original and ill-conditioned systems on each program for perturbation experiment and more 

to find out the effect of pivoting. The project will mainly explore the Gaussian Reduction as well 

as the effect of partial pivoting on Gaussian Reduction. 

- Matrix Solutions to Systems of L inear A lgebraic Equations (A ttaway 11.2) 

A linear algebraic equation is an equation of the form 

a1x1 + a2x2 + a3x3 + ! + anxn = b                                                                              (Eq. 1.1) 

"#$%$&'#$&()*&(%$&+,-*'(-'&+,$../+/$-'*0&'#$&1)*&(%$&'#$&2-3-,"-*0&(-4&5&/*&(&+,-*'(-'6 

A system of linear algebraic equations is a set of equations of the form: 

a11x1 + a12x2 + a13x3 + !&+ a1nxn = b1 

a21x1 + a22x2 + a23x3 + !&+ a2nxn = b2 

a31x1 + a32x2 + a33x3 + ! + a3nxn = b3 

 

am1x1 + am2x2 + am3x3 + !&+ amnxn = bm                                                                   (Eq. 1.2) 

This is called an % " & system of equations; for there are m equations and n unknowns. 

It can also be represented in matrix form as  

                                                         Ax = b                                                               (Eq. 1.3) 

where A is a matrix of the coefficients, x is a column vector of the unknowns, and b is a 

column vector of the constants from the right-hand side of the equations. The detailed 

combination in matrix production form is shown as below: 
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                                                  (Eq. 1.4) 

 

All systems of linear equations have either: no solutions, one solution, or infinitely many 

solutions. The goal for the solver function is to use the Gaussian elimination (explained later) to 

find the unique one solution vector for the linear equation which has an ! " ! system as its 

coefficient matrix. 

- Gauss E limination (Attaway 11.2.2.1)   

The Gauss elimination method to solve a system of equations consists of:  

- creating the augmented matrix [A: coefficient matrix (parametric matrix); b: constant 

vector] 

- Applying row reduction operations to this augmented matrix to get an upper 

triangular form in the coefficient matrix (forward elimination) 

- Then use back-substitution to solve 

Generally, the process of Gaussian elimination consists of two parts. The first part 

(forward elimination) reduces a given system to upper-triangular form, or results in a 

degenerate equation with no solution or infinite solutions, indicating the system is 

inconsistent or singular. This is accomplished through the use of elementary row 

operations (EROs). The second part uses back substitution to find the solution of the 

system above. 

 

- Partial Pivoting (Wikipedia)   

- In partial pivoting, the algorithm selects the entry with largest absolute value from the 

column of the matrix that is currently being considered as the pivot element. Partial 

pivoting is generally sufficient to adequately reduce round-off error. 

 

Procedure (explanation of the functions used to experiment the methods) 

- Program with basic Gaussian elimination: gauss_reduce() 
      Solving a system of linear equations uses direct Gaussian reduction. This function 

takes a square matrix of parameters, and a vector of constants, and returns a solution 

vector. The function is able to take systems of any size (up to practical limits) and it can 

check that the matrix is square, and that the constant vector has the appropriate number of 

elements, printing an error message and returning the zero vector if these solvability 

conditions are violated. The program will also print an error message and return a zero 

vector if it runs into a zero pivot which might indicate a singular system, though does not 
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necessarily imply that, (double-check the zero pivot after elementary row operations 

(EROs) reaching upper-triangular form). 

Secondary functions are called by the main function to do each parts of the Gaussian 

elimination. 

      Sample for running the program: 

!"#$%&'(%)*+,*-./%+$%(0-.)1(/%+2%303%/4/&(.5%
!6($(*-&(%(0-.)1(%+2%303%#/7$,%&'(%89(//(*&85%
:)-*-.;.-&;3<%=+$/&;>(=;3?%@%*-$9+.;&(/&;=-/(A3B%
)-*-.;.-&;3%@%
%%CD3EFGD3%%CF3EHIJD%
%%CF3EIKLL%%CFDELIJL%
=+$/&;>(=;3%@%
%%%JDE3DDH%
%%CKJE3GII%
%% %
!"#$%&'(%)*+,*-./%+$%(0-.)1(%+2%303%#/7$,%&'(%8M-7$%N+#*/(%L85%
/+1#&7+$;>(=;3%@%,-#//;*(9#=(A)-*-.;.-&;3<%=+$/&;>(=;3B%
/+1#&7+$;>(=;3%@%
%%CLDELFJI%
%%%LIEKKFJ%

%

- (Second Version) Program additionally using partial pivoting: gauss_reduce_pp()!
This program serves as the second version of the first program, which functions the 

same but additionally uses partial pivoting (pp) to refine the basic Gaussian elimination. 

Partial pivoting identifies and swaps in the correct pivot row for a specified working 

column (modifying a matrix and constant vector). 

Experiments: 

- Correctness, T iming and Distribution T ests 
1. Correctness T ests 

Run both programs on examples of 2x2, 3x3, and 4x4 systems, and check that the 

solutions are correct with a function that takes the coefficient matrix, the solution vector, 

and the constant vector, multiplies the coefficients by the solution and checks that the result 

is equal to the constant vector. (Using the help of eps() to check since the values are 

floating). 

2. T iming T ests 
Use tic, toc to time each program running on 10x10, 100x100, and 1000x1000 systems. 

Plot the results over a range of sizes to see if it supports the theoretical result that the 

running time on an NxN system is proportional to!$. We might also find out what 

percentage overhead adding pivoting entails. 

3. Distribution T ests 
Run your solver on 100 random 3x3 examples (generated by random_test_case() 

function), and compute the mean and standard deviation of each of the 3 solution variables.  

Compare the characteristics of both mean and standard deviation for each program. 

  

- Perturbation Experiment (Effect of Pivoting) 

 For each of 100 random 10 x 10 systems generated by random_test_case() (i.e. 

with coefficient values between -100.0 and 100.0), first find the solution to the system 
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using each program and record it. Then perturb the system by adding a (different) random 

real-valued number between -1.0 and 1.0 to each of the matrix coefficients and each 

constant element (1% of the original range). Again, using each program to solve the 

perturbed system and then compute the distance between the solution to the perturbed 

system and the solution to the original system. 

 Since we might not get a significant result (interesting differences in the mean and 

standard deviations) with that perturbation in the range [-1.0, 1.0], so we will compare the 

result in each range of '() to '(*+, and analyze the result. 

 An error will exit from the program when it encountered a zero pivot (or other 

reason) and a new random system will be re-run in the experiment, so that it will not 

contaminate the data. (Note: the probability of a zero pivot occurring should be quite low.) 

 

- I ll-Conditioned Systems and More 

A random ill-conditioned 10 x 10 system can be produced by first generating the 

coefficient matrix (and corresponding constant vector) at random, using values between -

100.0 and 100.0 as the above perturbation experiment. Then randomly select 3 of the 10 

rows, and make one of them almost the average of the other two by taking the 
-./

0
 

(average) plus a random value between -1.0 and 1.0 (1% of the original range). Repeat 

the perturbation experiment using 100 such ill-conditioned systems. This is for 

comparing answers to original and perturbed systems using the ill conditioned systems, 

rather than purely random ones as above. Test both the basic program and the second 

version using partial pivoting. Analyze the data through plotting and find out how the 

mean and standard deviation of the error compare to that of the well conditioned random 

systems. The result from comparison will indicate the effect of partial pivoting. Again, 

repeat the ill-conditioned systems on smaller ranges, like 0.01%, 0.00001%.  

  
- Extra C redit 

Repeat the perturbation experiment using 100 randomly generated systems of size 5, 

10, 20, 50, 100, 200. From the plot of the result, explain if the mean error is correlated 

with the size of the system. 

 

Results (figures and statistical analysis)  

- Correctness, T iming and Distribution T ests 
1. Correctness T ests (from diary_1) 

!"#$%&'(%)*+,*-./%+$%(0-.)1(/%+2%303<%F0F<%-$9%D0D%/4/&(./5%
!6($(*-&(%(0-.)1(%+2%3035%
:)-*-.;.-&;3<%=+$/&;>(=;3?%@%*-$9+.;&(/&;=-/(A3BO%
!"#$%&'(%)*+,*-./%+$%(0-.)1(%+2%3035%
/+1#&7+$;>(=;3%@%,-#//;*(9#=(A)-*-.;.-&;3<%=+$/&;>(=;3B%
/+1#&7+$;>(=;3%@%
%%%CPEFFGP%
%%%CPEHDPJ%
%%
!A6-#//7-$%"(9#=&7+$%Q7&'%)-*&7-1%)7>+&7$,B%
/+1#&7+$;>(=;3;))%@%,-#//;*(9#=(;))A)-*-.;.-&;3<%=+$/&;>(=;3B%
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/+1#&7+$;>(=;3;))%@%
%%%CPEFFGP%
%%%CPEHDPJ%
!='(=R%72%&'(%/+1#&7+$/%-*(%=+**(=&5%
:%='(=R(9;*(/#1&;3%?%@%='(=R7$,;/+1#&7+$A)-*-.;.-&;3<%=+$/&;>(=;3<%
/+1#&7+$;>(=;3B%
='(=R(9;*(/#1&;3%@%
S'(%/+1#&7+$/%-*(%=+**(=&E%
!A&'(%*(/#1&%2*+.%6-#//7-$%"(9#=&7+$%Q7&'%)-*&7-1%)7>+&7$,B%
:%='(=R(9;*(/#1&;3;))%?%@%='(=R7$,;/+1#&7+$A)-*-.;.-&;3<%=+$/&;>(=;3<%
/+1#&7+$;>(=;3;))B%
='(=R(9;*(/#1&;3;))%@%
S'(%/+1#&7+$/%-*(%=+**(=&E%
%%
!6($(*-&(%(0-.)1(%+2%F0F5%

%
%

!='(=R%72%&'(%/+1#&7+$/%-*(%=+**(=&5%
:%='(=R(9;*(/#1&;F%?%@%='(=R7$,;/+1#&7+$A)-*-.;.-&;F<%=+$/&;>(=;F<%
/+1#&7+$;>(=;FB%
='(=R(9;*(/#1&;F%@%
S'(%/+1#&7+$/%-*(%=+**(=&E%
!A&'(%*(/#1&%2*+.%6-#//7-$%"(9#=&7+$%Q7&'%)-*&7-1%)7>+&7$,B%
:%='(=R(9;*(/#1&;F;))%?%@%='(=R7$,;/+1#&7+$A)-*-.;.-&;F<%=+$/&;>(=;F<%
/+1#&7+$;>(=;F;))B%
='(=R(9;*(/#1&;F;))%@%
S'(%/+1#&7+$/%-*(%=+**(=&E%
%%
!6($(*-&(%(0-.)1(%+2%D0D5%

%
!='(=R%72%&'(%/+1#&7+$/%-*(%=+**(=&5%
:%='(=R(9;*(/#1&;D%?%@%='(=R7$,;/+1#&7+$A)-*-.;.-&;D<%=+$/&;>(=;D<%
/+1#&7+$;>(=;DB%%
='(=R(9;*(/#1&;D%@%
S'(%/+1#&7+$/%-*(%=+**(=&E%
!A&'(%*(/#1&%2*+.%6-#//7-$%"(9#=&7+$%Q7&'%)-*&7-1%)7>+&7$,B%
:%='(=R(9;*(/#1&;D;))%?%@%='(=R7$,;/+1#&7+$A)-*-.;.-&;D<%=+$/&;>(=;D<%
/+1#&7+$;>(=;D;))B%
='(=R(9;*(/#1&;D;))%@%
S'(%/+1#&7+$/%-*(%=+**(=&E%

 

 

Statistical analysis: 

The solution vectors from both programs are correct (checked using eps(100)). 
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2. T iming T ests 

Figure 1.1 the running time on an N*N system vs. !$                Figure 1.2 the running time on an N*N system vs. !$ (over a range of sizes) 

 

Figure 1.3 the running time on an N*N system vs. !$ (with pp)         

 

Statistical analysis: 

The Figures 1.1 7 1.4 shows that there is approximately a linear relationship between the 

running time on an N*N system and#!$:  

                  Running time on an N*N system = k * !$, k = constant real number               (Eq. 2.1) 

The running time on an N*N system is approximately proportional to!$ either in the 

basic program and the second version with partial pivoting. 

Figure 1.4 the running time on an N*N system vs. !$ (over a 

range of sizes) (with pp)    
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From the Figures 1.1 7 1.4, the percentage overhead adding pivoting entails is quite small, 

approximately under 7%. The growth on running time in the beginning is slower when !$is 

smaller than#1 " '(2. 

 

 

3. Distribution T ests (from diary_1) 

!"#$%4+#*%/+1>(*%+$%LPP%*-$9+.%F0F%(0-.)1(/5%
S'(%.(-$%2+*%&'(%27*/&%>-*7-T1(%7/%CPEFDGDKFO%
%&'(%.(-$%2+*%&'(%/(=+$9%>-*7-T1(%7/%PELPI3D3O%
%&'(%.(-$%2+*%&'(%&'7*9%>-*7-T1(%CPEDDJIGJE%
S'(%/&-$9-*9%9(>7-&7+$%2+*%&'(%27*/&%>-*7-T1(%7/%FEHH3FHLO%
%&'(%/&-$9-*9%9(>7-&7+$%2+*%&'(%/(=+$9%>-*7-T1(%7/%DEK3KPIIO%
%&'(%/&-$9-*9%9(>7-&7+$%2+*%&'(%&'7*9%>-*7-T1(%IEKJKJJJE%
%%
!"#$%4+#*%/+1>(*%AQ7&'%)-*&7-1%)7>+&7$,B%+$%LPP%*-$9+.%F0F%(0-.)1(/5%
U7&'%)-*&7-1%)7>+&7$,<%&'(%.(-$%2+*%&'(%27*/&%>-*7-T1(%7/%CPEDJDGDJO%
%&'(%.(-$%2+*%&'(%/(=+$9%>-*7-T1(%7/%PEII33D3O%
%&'(%.(-$%2+*%&'(%&'7*9%>-*7-T1(%CPE3JJKDDE%
U7&'%)-*&7-1%)7>+&7$,<%&'(%/&-$9-*9%9(>7-&7+$%2+*%&'(%27*/&%>-*7-T1(%7/%
FEDPGLHKO%
%&'(%/&-$9-*9%9(>7-&7+$%2+*%&'(%/(=+$9%>-*7-T1(%7/%DE33JLGIO%
%&'(%/&-$9-*9%9(>7-&7+$%2+*%&'(%&'7*9%>-*7-T1(%DELJPJPHE%

 

Statistical analysis: 

The mean for each of the three variables is around zero (mostly within [-1, 1]). The 

standard deviation of each of the three variables is around 4 (mostly within [3, 6]). The 

mean and the standard deviation for each of the three solution variables are comparatively 

quite small comparing with [-100, 100], the range of each element in the 3x3 examples 

(generated by random_test_case() function). 
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- Perturbation Experiment (Effect of Pivoting) 

Figure 2.1 the means of errors in different perturbed ranges            Figure 2.2 the standard deviations of errors in different perturbed ranges  

Figure 2.3 the means of errors in different perturbed ranges (with pp)     

Statistical analysis: 

Through plotting on Figure 2.1 7 2.4, we compared the result with perturbation in each 

range of '() to '(*+, and after analyzing the result we still cannot distinguish significant 

differences in the mean and standard deviations between the basic Gaussian reduction program 

and the second version with partial pivoting. 
Note: the main program has made sure an error will exit from the program when it 

encountered a zero pivot (or other reason) and a new random system (of 10 * 10) will be re-run 

in the experiment, so that it will not contaminate the data.  

 

Figure 2.4 the standard deviations of errors in different perturbed 

ranges (with pp) 
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- I ll-Conditioned Systems 

           

 

 

Statistical analysis: 

From Figures 3.1 7 3.4, we compared the result with perturbation in each range of '() to 

'(*+ in 1% ill-conditioned systems. The mean and standard deviation of the error might be a 

little smaller for [-1, 1] perturbed range, but are larger for the rest of perturbed ranges comparing 

to those of the well conditioned random systems.  

Comparing Figure 3.1, 3.2 and 3.3, 3.4, the mean and standard deviation of the error in 1% 

ill-conditioned systems are smaller in the solver program with partial pivoting. 

Figure 3.1 the means of errors in different perturbed 

ranges (1% ill-conditioned systems)"
Figure 3.2 the standard deviations of errors in different 

perturbed ranges (1% ill-conditioned systems)"

Figure 3.3 the means of errors in different perturbed 

ranges (1% ill-conditioned systems) (with pp)"
Figure 3.4 the standard deviations of errors in different 

perturbed ranges (1% ill-conditioned systems) (with pp)"
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- Extra C redit 

 

 

Statistical analysis: 

From Figures 6.1 7 6.4, we compared the result of the means and standard deviations of 

errors in different perturbed ranges in different sizes systems. The plotting indicates that when 

the perturbed range is larger or equal to#'(*$#345&67 8 (9((':;, the sizes of system seem to 

have effects on the result of the perturbation experiment, which means"the mean error is 

correlated with the size of the system in comparatively larger perturbed ranges. 

Comparing Figure 6.1, 6.2 and 6.3, 6.4, the mean and standard deviation of the error in 

different perturbed ranges are less affected by different sizes of systems in the solver program 

with partial pivoting. 

Figure 6.1 the means of errors in different perturbed 

ranges (in different sizes of systems)"
Figure 6.2 the standard deviations of errors in different 

perturbed ranges (in different sizes of systems)"

"

Figure 6.3 the means of errors in different perturbed 

ranges (in different sizes of systems) (with pp)"
Figure 6.4 the standard deviations of errors in different 

perturbed ranges (in different sizes of systems) (with pp)"

"



!;"
"

Discussion (including conclusions and the recommendations for future work  

From the Correctness T ests, it can be concluded that both solver programs are running 

well judging from the correctness of the result. 

 

From the T iming T ests,  

Figure 1.2 the running time on an N*N system vs. !$ (over a range 

of sizes) 

the experiment figures show that there is approximately a linear relationship between the 

running time on an N*N system and#!$:  

                  Running time on an N*N system = k *!$, k = constant real number               (Eq. 2.1) 

The running time on an N*N system is approximately proportional to!$ either in the 

basic program and the second version with partial pivoting. 

From the Figures 1.1 7 1.4, the percentage overhead adding pivoting entails is quite small, 

approximately under 7%. In conclusion, partial pivoting can refine the Gaussian elimination but 

will NOT add much time in running the whole program. The slower growth on running time in 

the beginning (when !$is smaller than#1 " '(2), may indicate that MATLAB may be 

recognizing the existence of the loop in the function and changing the processing algorithm 

behind the screen. 

From the Distr ibution Tests, The mean for each of the three variables is around zero 

(mostly within [-1, 1]). Since each element in the original matrices generated by 

random_test_case() function is in the range of [-100, 100], the mean for each of the three 

variables are expected to be around the middle of the range, zero. The standard deviation of each 

of the three variables is around 4 (mostly within [3, 6]). Therefore, it is within the expectation 

from the characteristic of the input data, the mean and the standard deviation for each of the three 

solution variables are around zero and comparatively quite small comparing with [-100, 100] (the 

range of each element in the 3x3 examples). 

 

Figure 1.4 the running time on an N*N system vs. !$ (over a 

range of sizes) (with pp)    
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- Perturbation Experiment (Effect of Pivoting) 

Through the data presented above in the 8Result) part (Figure 2.1 7 2.4), we compared the 

result with perturbation in each range of '() to '(*+, and after analyzing the result, significant 

differences still cannot be distinguished from the mean and standard deviations between the 

basic Gaussian reduction program and the second version with partial pivoting. However, this 

does not necessarily mean that partial pivoting does not have any effect. 
Note: the main program has made sure an error will exit from the program when it 

encountered a zero pivot (or other reason) and a new random system (of 10 * 10) will be re-run 

in the experiment, so that it will not contaminate the data (the size of the sample data will always 

be 100).  

- I ll-Conditioned Systems 

From Figures 3.1 7 3.4, we compared the result with perturbation in each range of '() to 

'(*+ in 1% ill-conditioned systems. The mean and standard deviation of the error might be a 

little smaller for [-1, 1] perturbed range, but are larger for the rest of perturbed ranges comparing 

to those of the well conditioned random systems. From Figures 4.1 7 4.4, we compared the result 

with perturbation in each range of '() to '(*+ in 0.01% ill-conditioned systems. The standard 

deviation of the error is larger for most of perturbed ranges comparing to those of the well 

conditioned random systems. From Figures 5.1 ! 5.4, we compared the result with perturbation 

in each range of '()<=#'(*+ in 0.00001% ill-conditioned systems. The standard deviation of the 

error is much larger for most of perturbed ranges comparing to those of the well conditioned 

random systems and those of the larger range ill-conditioned systems (shown as above from 

Figure 3.1 - 4.4). In conclusion, both the mean and the standard deviation of the errors will get 

larger as the percentage for the ill-condition get smaller. 

Comparing Figure 3.1, 3.2 and 3.3, 3.4, the mean and standard deviation of the error in 1% 

ill-conditioned systems are smaller in the solver program with partial pivoting. Comparing 

Figure 4.1, 4.2 and 4.3, 4.4, the mean and standard deviation of the error in 0.01% ill-conditioned 

systems are more consistent and smaller in the solver program with partial pivoting. Comparing 

Figure 5.1, 5.2 and 5.3, 5.4, the mean and standard deviation of the error in 0.00001% ill-

conditioned systems are more consistent but not necessarily smaller in the solver program with 

partial pivoting. In conclusion, when running on ill-conditioned systems, the mean and standard 

deviation of the error in are mostly more consistent and smaller in the solver program with 

partial pivoting (at least under 0.00001% ill-condition range). Partial pivoting can refine the 

basic Gaussian elimination to reach more accurate solutions in ill-conditioned systems. 

 
- Extra C redit 

From Figures 6.1 7 6.4, we compared the result of the means and standard deviations of 

errors in different perturbed ranges in different sizes systems. The plotting indicates that when 

the perturbed range is larger or equal to#'(*$#345&67 8 (9((':;, the sizes of system seem to 

have effects on the result of the perturbation experiment, which means"the mean error is 

correlated with the size of the system in comparatively larger perturbed ranges. In conclusion, 

when the perturbed range is larger or equal to#'(*$#345&67 8 (9((':;,#the mean error is 

correlated with the size of the system, when the system size is larger, the mean and the standard 

deviation of the error will both be comparatively larger. 
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Comparing Figure 6.1, 6.2 and 6.3, 6.4, the mean and standard deviation of the error in 

different perturbed ranges are less affected by different sizes of systems in the solver program 

with partial pivoting. In conclusion, with partial pivoting, the basic Gaussian elimination 

functions will have more consistent and accurate performance in different sizes systems. 

 Below is the specific comparison (in addition to the overall comparison in 8Result) part 

above) between size 5 and size 100 in the perturbation experiment. The above conclusion about 

the mean and the standard deviation of the error will be both rising with the growth of system 

sizes is visualized and proved in the Figures 7.1 7 7.4 (below). 

Comparison in mean: 

 

Comparison in standard deviation: 

 

Figure 7.1 the means of errors in different perturbed 

ranges (system size: 5) "
Figure 7.2 the means of errors in different perturbed ranges 

(system size: 100) "

"

Figure 7.3 the standard deviations of errors in different 

perturbed ranges (system size: 5) "
Figure 7.4 the standard deviations of errors in different 

perturbed ranges (system size: 100) "

"
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Appendix 

pivot.m 

Note: For the rows under the first row, the pivot can be turned to zero during row reduction (after 

normal partial pivoting). The function 'pivot' I designed can detect and avoid this problem before 

it happens. It will select another row to switch with the current pivot's row if it detects that the 

pivot can be turned to zero during row reduction. 
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