
CSC 252
Written Assignment 1

8th October 2020
Due 15th October 2020

1. (20 points) Consider the following different styles of instruction set architectures:

(a) Stack: All operations occur on the top of a stack. Only push and pop instructions access memory.
All other instructions remove their operands from the stack and replace them with the result (the
x86 floating point unit uses a version of this architecture). The number of stack entries that are
retained on-chip is 2 (top two entries) — accesses to other stack positions are memory references.
Additionally, the dup instruction duplicates the entry at the top of the stack.

(b) Accumulator: A single architecturally visible register implicitly identified in most instructions.
This type of architecture was used in the early days of computing when hardware (real-estate/area)
was precious. In addition to register space, it also reduced code space since there was no need to
specify the register operand.

(c) Load-store: All operations occur in registers, and register-to-register instructions have three
operands per instruction. There are 16 general-purpose registers, and register specifiers are 4
bits long.

(d) Memory-to-memory: All three operands of each instruction are in memory.

All architectures support the following operations: add, sub, and neg. neg negates the top of the stack,
the implicit accumulator, the explicitly specified register, or the explicitly specified memory address,
depending on the instruction set architecture style.

The following shows the assembly code for the C statement A = B + C; (with comments separated
by a #); note that the order of operands remains the same for operations where the operand order
matters, e.g., A = B - C.

• Stack:

push AddressC # Top=Top+4; Stack[Top] = Memory[AddressC]

push AddressB # Top=Top+4; Stack[Top] = Memory[AddressB]

add # Stack[Top-4]=Stack[Top]+Stack[Top-4]; Top=Top-4;

pop AddressA # Memory[AddressA] = Stack[Top]; Top=Top-4;

• Accumulator (Acc):

load AddressB # Acc = Memory[AddressB]; Acc = B

add AddressC # Acc = Acc + Memory[AddressC] or Acc = Acc + C; Acc = B + C

store AddressA # Memory[AddressA] = Acc; A = B + C

• Load-store:

load AddressB, regB # regB = Memory[AddressB]

load AddressC, regC # regC = Memory[AddressC]

add regB, regC, regA # regA = regB + regC

store AddressA, regA # Memory[AddressA] = regA

• Memory-to-memory:

add AddressB, AddressC, AddressA # A = B + C

You may make the following assumptions about all four instruction sets:

• The opcode is always 1 byte (8 bits).

• All memory addresses are 2 bytes (16 bits).

• All data operands are 4 bytes (32 bits).

• All instructions are an integral number of bytes in length.

• For operand specifiers that are not an integral number of bytes, multiple specifiers within a single
instruction may be packed into a single byte.

For example, a register load will require four instruction bytes (one for the opcode, one for the register
destination, and two for a memory address) to be fetched from memory along with four data bytes. A
memory-to-memory add instruction will require seven instruction bytes (one for the opcode and two
for each of the three memory addresses) to be fetched from memory and will result in 12 data bytes
being transferred (eight from memory to the processor and four from the processor to memory).

For the following C code, write an equivalent assembly language program in each architectural style
(assume all variables are initially in memory and tno compiler or hand optimizations are performed):

a = b + c;

b = a + c;

d = a - b;

For the code sequence in each instruction style, calculate the instruction bytes fetched and the total
number of bytes (instruction AND data) transferred (read or written) to or from memory. Which
architecture is most efficient as measured by the code size? Which architecture is most efficient as
measured by the total number of bytes trasferred to or from memory (the total number of instruction
AND data bytes)? If the answers are not the same, why are they different?

2. (20 points) Consider a fictitious 16-bit computer with registers r0–r7. Memory is word-addressable,
i.e., each address refers to a 16-bit quantity (as opposed to the traditional byte-addressable memory
where each byte is addressable). Instruction operands may be addressed in any of the following eight
addressing modes:

Syntax Mode Effect
rn Register rn
(rn) Register indirect M [rn]
d(rn) Displacement M [d + rn]
@d(rn) Displacement indirect M [M [d + rn]]
(rn)+ Autoincrement M [rn]; rn ← rn + 1
@(rn)+ Autoincrement indirect M [M [rn]]; rn ← rn + 1
−(rn) Autodecrement rn ← rn − 1;M [rn]
@− (rn) Autodecrement indirect rn ← rn − 1;M [M [rn]]

(a) How many bits of an instruction are needed to specify an operand? (do not count the d displace-
ment operands.)

(b) r7 is also the program counter (PC), which during execution of an instruction points to the next
instruction in sequence (assuming no change in control flow). We may therefore derive new modes
by using r7 in one of the above modes. Give the appropriate addressing mode (using r7; just the
addressing mode will suffice - no need for further details) for each of the following:

(i) Immediate — Operand is the next word (after the currently executing instruction)

(ii) Absolute — Operand is addressed by the next word

(iii) PC-Relative — Operand is at PC + d

(iv) PC-Relative-Indirect — Operand is addressed by the word at PC + d

(c) In each of the above derived addressing modes, what must be done to take care not to execute
operands?

(d) Consider the following local declarations (in C). Local variables are addressed in C using a dis-
placement from the frame pointer (r5 in this case):

int i, *pi, **ppi;

Integers are assumed to occupy one word (remember that only whole words may be addressed, so
that the address of the next consecutive word may be obtained by adding or subtracting 1 from
the current address). Also keep in mind that the content of pi and ppi is determined only during
execution, i.e., pi may not point to i and ppi may not point to pi.

Provide the appropriate addressing mode for each operand (for those that can be directly addressed
by an instruction on this hypothetical computer through a single addressing mode) under each
of the following assumptions. You need not give the exact operand, the correct addressing mode
will suffice.

(i) Nothing is in a register (except for the frame pointer in r5)

4 i *pi *(pi+1) **ppi **(ppi+1) *(*ppi+1)

——— ——— ——— ——— ——— ——— ———

(ii) i, pi, and ppi are in registers (in addition to the frame pointer in r5)

4 i *pi *(pi+1) **ppi **(ppi+1) *(*ppi+1)

——— ——— ——— ——— ——— ——— ———

3. (20 points) You are the lead designer of a new processor. The processor design and compiler are
complete. However, your manager has requested that you spend an additional 6 months to improve
your system. The base system has a clock rate of 1 GHz and the following measurements have been
made of the expected workload:

Instruction class CPI Frequency
Integer 2 40%
Control flow 3 25%
Floating point 3 25%
Memory 5 10%

The hardware team claims that in 6 months it can improve the processor design to give it a clock rate
of 1.2GHz, but with the following measurements for the same workload:

Instruction class CPI Frequency
Integer 2 40%
Control flow 4 25%
Floating point 3 25%
Memory 6 10%

The compiler team claims that in 6 months it will be able to improve the compiler by reducing the
number of instructions of each type required relative to the base compiler.

Instruction class Percentage of instructions executed
vs. base machine

Integer 90%
Control flow 90%
Floating point 85%
Memory 95%

You are given the choice of employing only one of these teams. Which would you choose? Your objective
is to minimize the execution time of the workload, which has a total of 100 million instructions on the
base machine. Explain your answer and back it up quantitatively.

