This Week'’s Action Items

* Read Chapter 3
« Complete Quiz 4
« Start Assignment 2

— Pre-Assignment Due Date: September 18 at
11:59 pm

Recap of Last Class: Floating Point

» Background: Fractional binary numbers
* |EEE floating point standard: Definition
« Example and properties

* Rounding, addition, multiplication

* Floating point in C

* Summary

Floating Point

* Recall scientific notation
— 65.4 = 6.54x10* (normal form — 1 non-zero leading digit)
— Mantissa = 6.54, exponent = 1, radix (base) = 10
* Mantissa — sign/magnitude representation
* Exponent — biased notation
Single-precision
S|exp+127|significand
1| 8-bits | 23-bits

Double-precision
S|exp+1023|significand
1| 11-bits | 52-bits

Zero, Infinity, NAN

» Zero —0]0...0]0...0
* +/- infinity — $|1...1/0...0
* Nan — S|1...1|non-zero

IEEE 754 Floating Point Rounding

» Four modes:
— Round to +infinity — add 1 if round or sticky bit is set
and result>=0
— Round to —infinity — add 1 if round or sticky bit is set
and result< 0

— Round to O (truncate)
— Round to nearest number (default) — round to even
when exactly halfway

« Add 1 if round bit and LSB of result are set, or, if round bit
and sticky bit are set

* Minimizes mean error introduced by rounding

Closer Look at Nearest-Even

Default Rounding Mode: Round to nearest, ties to even
— Hard to get any other kind without dropping into assembly
— All others are statistically biased

« Sum of set of positive numbers will consistently be over- or under-
estimated

Applying to Other Decimal Places / Bit Positions

— When exactly halfway between two possible values
» Round so that least significant digit is even

— E.g., round to nearest hundredth

7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way—round up)
7.8850000 7.88 (Half way—round down)

Rounding Binary Numbers

+ Binary Fractional Numbers
— “Even” when least significant bit is o
— “Half way” when bits to right of rounding position = 100...

* Examples
— Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded
Value

23/32 10.00011» 10.00> (<1/2—down) 2
23/16 10.00110» 10.01> (>1/2—up) 2 1/4
27/8 1011100, 11.00. (1/2—up) 3
25/8 10.101002 10.10. (1/2—down) 2 1/2

Floating Point Addition

(1)t M1 280+ (-1y2 M2 22
—Assume E1 > E2

Get binary points lined up

|4_E1—E2 —]

Exact Result: (-1)* M 2f

-Sign s, significand M: + (—1)2 M2

* Result of signed align & add
—Exponent £: E1 |(_1)s M |
Fixing

—If M = 2, shift M right, increment £

—if M < 1, shift M left k positions, decrement E by k
—Overflow if £ out of range

—Round M to fit £rac precision

Floating Point Addition

Align decimal point by matching larger exponent
Add significands (possibly unnormalized)
Normalize — shift sum/adjust exponent

* Round number to fit in significand field

Floating Point — Additional bits for
accuracy

Carry/borrow bit — to take into account overflow
(carry/borrow) in result

Guard bit — to take care of normalizing left shift
Round bit — for correct rounding

Sticky bit — fine-tune rounding — additional bit to
the right of round that is set to 1 if any 1 bit falls
off the end of the round digit

9/14/2020 10

FP Multiplication

(-1t m1 282 x (-1)2 M2 22
Exact Result: (1) M 2F
—Sign s: s1"s2

— Significand M: M1 x M2
— Exponent E: E1 + E2

* Fixing
—If M = 2, shift M right, increment E
— If E out of range, overflow
— Round M to fit £rac precision

10

Floating Point Multiplication

Exponent of product = sum of exponents — bias

Multiply significands — decimal point location =
sum of digits to the right of decimals

Normalize — check for overflow/underflow
Round

Sign — positive if both are the same, negative if
otherwise

12

12

Exceptions

» |EEE standard specifies defaults and allows traps to
permit user to handle exceptions
— Invalid operation: e.g., sqrt of —ve number, 0/0, inf/inf
* Result is NaN

— Overflow: result is +/- inf unless overflow exception is
enabled

— Divide by 0: result is +/- inf if exception not enabled
— Underflow: non-zero result underflows to 0
— Inexact: rounded result not the actual result

13

CSC 252:
Machine-Level Programming:
Instruction Set Architectures

14

13

14

This Module (~4 Lectures)

C Program

Assembly Program

Machine Code

15

Abstract Machines

Machine Models Data Control
C 1) char 1) loops
2) int, float 2) conditionals
mem 3) double 3) switch
4) struct, array 4) Proc. call
5) pointer 5) Proc. return
Assembly
1) byte 3) branch/jump
2) 2-byte word 4) call
mem — | regs | alu | 3) 4-byte long word 5) ret

4) 8-byte quad word

Cond.

Stacﬂ Codes| Processor | 5) contiguous byte allocation
6) address of initial byte

16

15

16

Assembly Language Characteristics

* Minimal Data Types
— “Integer” data of 1, 2, 4, or 8 bytes
» Addresses (untyped pointers)
+ Data values
— Floating point data of 4, 8, or 10 bytes
— No aggregate types such as arrays or structures
+ Just contiguously allocated bytes in memory
* Primitive Operations
— Perform arithmetic function on register or memory data
— Transfer data between memory and register
+ Load data from memory into register
+ Store register data into memory
— Transfer control
+ Unconditional jumps to/from procedures
+ Conditional branches
9/14/2020 17

Instruction Set Architecture

* There used to be many ISAs

— Motorola, x86, ARM, Power/PowerPC, Sparc,
MIPS, |A64, z

— More consolidated today: ARM for mobile, x86
for others

e There are even more microarchitectures

— Apple/Samsung/Qualcomm have their own
microarchitecture (implementation) of the ARM

17

Intel x86 Processors

« Dominate laptop/desktop/server market

« Evolutionary design
— Backwards compatible up until 8086, introduced in 1978
— Added more features as time goes on

* Complex instruction set computer (CISC)
— Many different instructions with many different formats
+ But, only small subset encountered with Linux programs

— Hard to match performance of Reduced Instruction Set
Computers (RISC)

— But, Intel has done just that!
 In terms of speed. Less so for low power.

ISA
— Intel and AMD have different microarchitectures
for x86 i
18
Intel x86 Evolution: Milestones
Name Date Transistors MHz
« 8086 1978 29K 5-10

— First 16-bit Intel processor. Basis for IBM PC & DOS
— 1MB address space

« 386 1985 275K 16-33
— First 32 bit Intel processor , referred to as 1A32
— Added “flat addressing”, capable of running Unix

* Pentium 4E 2004 125M 2800-3800
— First 64-bit Intel x86 processor, referred to as x86-64

* Core 2 2006 291M 1060-3500
— First multi-core Intel processor

« Corei7 2008 731M 1700-3900

— Four cores (our shark machines)

19

20

Intel x86 Processors, cont.

* Machine Evolution

— 386 1985 0.3M Integfated=Mgm0rv CBhiroIIen‘-=3=Ch DDR3!

— Pentium 1993 3.1M

— Pentium/MMX 1997 4.5M

— PentiumPro 1995 6.5M

— Pentium Il 1999 8.2M

— Pentium 4 2001 42M

— Core 2 Duo 2006 291M Shared L3 Cache

— Core i7 2008 731M
» Added Features

— Instructions to support multimedia operations

— Instructions to enable more efficient conditional operations

— Transition from 32 bits to 64 bits

— More cores

Core2 - Core3

Core 0. Core

21

x86 Clones: Advanced Micro
Devices (AMD)

Historically

—AMD has followed just behind Intel

—Getting very competitive

—Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

—Built Opteron: tough competitor to Pentium 4

—Developed x86-64, their own extension to 64 bits

2020 State of the Art

—Tiger Lake (11t generation)
* 10 nm, 9-15 Watts, 2-4 cores, mobile platforms
— Comet Lake (10" generation)

* 14 nm, up to 5.3 GHz, 8 cores/16 threads, 45
Watts

intel 11

10th-Gen-H-Series-2.jpg

22

23

Intel’'s 64-Bit History

2001: Intel Attempts Radical Shift from IA32 to 1A64
— Totally different architecture (ltanium)
— Executes 1A32 code only as legacy
— Performance disappointing
2003: AMD Steps in with Evolutionary Solution
— x86-64 (now called “AMD64")
Intel Felt Obligated to Focus on 1A64
— Hard to admit mistake or that AMD is better
2004: Intel Announces EM64T extension to 1A32
— Extended Memory 64-bit Technology
— Almost identical to x86-64!
All but low-end x86 processors support x86-64
— But, lots of code still runs in 32-bit mode

24

Today: Machine Programming I:
Basics

+ History of Intel processors and architectures
C, assembly, machine code

+ Assembly Basics: Registers, operands, move
Arithmetic & logical operations

Definitions

Architecture: (also ISA: instruction set architecture) The parts of a
processor design that one needs to understand or write
assembly/machine code.

— Examples: instruction set specification, registers.
Microarchitecture: Implementation of the architecture.

— Examples: cache sizes and core frequency.

Code Forms:

— Machine Code: The byte-level programs that a processor
executes

— Assembly Code: A text representation of machine code

Example I1SAs:
— Intel: x86, 1A32, Itanium, x86-64
— ARM: Used in almost all mobile phones

25

Assembly/Machine Code View

CPU Memory
Addresses

Registers Cod

ode
Data
< >, Data
Condition Instructions Stack
Codes

Programmer-Visible State
— PC: Program counter
« Address of next instruction
« Called “RIP” (x86-64)
— Register file
« Heavily used program data
— Condition codes

« Store status information about most
recent arithmetic or logical operation

» Used for conditional branching

—Memory

« Code and user data

« Byte addressable array

« Stack to support procedures

27

26
Turning C into Object Code
— Code infiles pl.c p2.c
— Compile with command: geec -Og pl.c p2.c -o p
« Use basic optimizations (-0g) [New to recent versions of GCC]
« Put resulting binary in file p
text I C program (pl.c p2.c) I
Compiler (gcc -0Og -S)
text I Asm program (pl.s p2.s) I
Assembler (gcc or as)
binary I Object program (pl .o p2.0) I Static libraries
(.a)
Linker (gcc or 1d)
binary | Executable program (p)
28

Abstract Machines

Machine Models Data Control
C 1) char 1) loops
2) int, float 2) conditionals
mem 3) double 3) switch
4) struct, array 4) Proc. call
5) pointer 5) Proc. return
Assembly
1) byte 3) branch/jump
2) 2-byte word 4) call
mem regs | alu | 3) 4-byte long word 5) ret

4) 8-byte quad word
Cond.
Stacﬂ processor | 5) contiguous byte allocation

Cod
odes 6) address of initial byte

29

29
Compiling Into Assembly
C Code Generated x86-64 Assembly
long plus(long x, long y); sumstore:
pushg Srbx
void sumstore(long x, long y, movq $rdx, %rbx
long *dest) call plus
{ movqg $rax, (%rbx)
long t = plus(x, y); popgq Srbx
*dest =% ret
}

Obtain (on shark machine) with command
gcc -Og —-S sum.c

Produces file sum. s

Pointers in C

inta=4;
intb=3;
int *c;

c = &a;
b +=*c;

30

30

Assembly Characteristics: Data

Types
* “Integer” data of 1, 2, 4, or 8 bytes

— Data values
— Addresses (untyped pointers)

» Floating point data of 4, 8, or 10 bytes

» Code: Byte sequences encoding series of
instructions

« No aggregate types such as arrays or structures

31

— Just contiguously allocated bytes in memory

32

Assembly Characteristics:

Operations
« Perform arithmetic function on register or memory
data

» Transfer data between memory and register
— Load data from memory into register
— Store register data into memory

» Transfer control
— Unconditional jumps to/from procedures
— Conditional branches

33
Machine Instruction Example
« C Code
*dest = t; — Store value t where designated
by dest
* Assembly
[movq srax, (srbx) | - Move 8-byte value to memory

* Quad words in x86-64 parlance
— Operands:
t: Register $rax
dest: Register $rbx
*dest: Memory M[$rbx]
* Object Code
— 3-byte instruction
— Stored at address 0x40059e

0x40059%e: 48 89 03

Object Code

Code for sumstore
« Assembler

0X0302295= — Translates .s into .o

%))) .
0x48 — Binary encoding of each instruction
0x89 — Nearly-complete image of executable
0xd3 code
0xe8 . . .
0xt2 — Missing linkages between code in
Oxff different files
Oxff e Linker
OxEE | Jotal of 14 bytes — Resolves references between files
0x48 .))) -
0x89 * Eachinstruction — Combines with static run-time libraries
0x03 1,3, or 5 bytes * E.g., code formalloc, printf
0x5b e Startsat address — Some libraries are dynamically linked
0xc3 0x0400595

« Linking occurs when program begins
execution

34

35

Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:

400595: 53 push $rbx

400596: 48 89 d3 mov $rdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059e: 48 89 03 mov $rax, ($rbx)
4005al: 5b pop %rbx

4005a2: c3 retq

» Disassembler
objdump -d sum
— Useful tool for examining object code
— Analyzes bit pattern of series of instructions
— Produces approximate rendition of assembly code
— Can be run on either a.out (complete executable) or .o file

36

Alternate Disassembly

Object

0x0400595:
0x53
0x48
0x89
0xd3
Oxe8
0xf2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b
0xc3

Disassembled

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push $rbx
0x0000000000400596 <+1>: mov $rdx, $rbx
0x0000000000400599 <+4>: callg 0x400590 <plus>
0x000000000040059e <+9>: mov $rax, ($rbx)
0x00000000004005al <+12>:pop $rbx
0x00000000004005a2 <+13>:retq

» Within gdb Debugger
gdb sum
disassemble sumstore
— Disassemble procedure
x/14xb sumstore
— Examine the 14 bytes starting at sumstore

37

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000:

30001001:

30001003 AReverse engineerir}g forbidden by
30001005 Microsoft End User License Agreement
3000100a:

Anything that can be interpreted as executable code
Disassembler examines bytes and reconstructs assembly source

38

10

