
1

This Week’s Action Items

• Read Chapter 3

• Complete Quiz 4

• Start Assignment 2

– Pre-Assignment Due Date: September 18 at

11:59 pm

1

Carnegie Mellon

Recap of Last Class: Floating Point

• Background: Fractional binary numbers

• IEEE floating point standard: Definition

• Example and properties

• Rounding, addition, multiplication

• Floating point in C

• Summary

3

Floating Point

• Recall scientific notation

– 65.4 = 6.54x101 (normal form – 1 non-zero leading digit)

– Mantissa = 6.54, exponent = 1, radix (base) = 10

• Mantissa – sign/magnitude representation

• Exponent – biased notation

Single-precision

S|exp+127|significand

1| 8-bits | 23-bits

Double-precision

S|exp+1023|significand

1| 11-bits | 52-bits

4

Zero, Infinity, NAN

• Zero – 0|0…0|0…0

• +/- infinity – S|1…1|0…0

• Nan – S|1…1|non-zero

1 2

3 4

2

5

IEEE 754 Floating Point Rounding

• Four modes:

– Round to +infinity – add 1 if round or sticky bit is set

and result >= 0

– Round to –infinity – add 1 if round or sticky bit is set

and result < 0

– Round to 0 (truncate)

– Round to nearest number (default) – round to even

when exactly halfway

• Add 1 if round bit and LSB of result are set, or, if round bit

and sticky bit are set

• Minimizes mean error introduced by rounding

Carnegie Mellon

Closer Look at Nearest-Even
• Default Rounding Mode: Round to nearest, ties to even

– Hard to get any other kind without dropping into assembly

– All others are statistically biased

• Sum of set of positive numbers will consistently be over- or under-

estimated

• Applying to Other Decimal Places / Bit Positions

– When exactly halfway between two possible values

• Round so that least significant digit is even

– E.g., round to nearest hundredth

7.8949999 7.89 (Less than half way)

7.8950001 7.90 (Greater than half way)

7.8950000 7.90 (Half way—round up)

7.8850000 7.88 (Half way—round down)

Carnegie Mellon

Rounding Binary Numbers

• Binary Fractional Numbers

– “Even” when least significant bit is 0

– “Half way” when bits to right of rounding position = 100…2

• Examples

– Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded

Value

2 3/32 10.000112 10.002 (<1/2—down) 2

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4

2 7/8 10.111002 11.002 (1/2—up) 3

2 5/8 10.101002 10.102 (1/2—down) 2 1/2

Carnegie Mellon

Floating Point Addition

• (–1)s1 M1 2E1 + (-1)s2 M2 2E2

–Assume E1 > E2

• Exact Result: (–1)s M 2E

–Sign s, significand M:

• Result of signed align & add

–Exponent E: E1

• Fixing

–If M ≥ 2, shift M right, increment E

–if M < 1, shift M left k positions, decrement E by k

–Overflow if E out of range

–Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

Get binary points lined up

5 6

7 8

3

9

Floating Point Addition

• Align decimal point by matching larger exponent

• Add significands (possibly unnormalized)

• Normalize – shift sum/adjust exponent

• Round number to fit in significand field

9/14/2020 10

Floating Point – Additional bits for

accuracy

• Carry/borrow bit – to take into account overflow

(carry/borrow) in result

• Guard bit – to take care of normalizing left shift

• Round bit – for correct rounding

• Sticky bit – fine-tune rounding – additional bit to

the right of round that is set to 1 if any 1 bit falls

off the end of the round digit

Carnegie Mellon

FP Multiplication

• (–1)s1 M1 2E1 x (–1)s2 M2 2E2

• Exact Result: (–1)s M 2E

– Sign s: s1 ^ s2

– Significand M: M1 x M2

– Exponent E: E1 + E2

• Fixing

– If M ≥ 2, shift M right, increment E

– If E out of range, overflow

– Round M to fit frac precision 12

Floating Point Multiplication

• Exponent of product = sum of exponents – bias

• Multiply significands – decimal point location =

sum of digits to the right of decimals

• Normalize – check for overflow/underflow

• Round

• Sign – positive if both are the same, negative if

otherwise

9 10

11 12

4

13

Exceptions

• IEEE standard specifies defaults and allows traps to

permit user to handle exceptions

– Invalid operation: e.g., sqrt of –ve number, 0/0, inf/inf

• Result is NaN

– Overflow: result is +/- inf unless overflow exception is

enabled

– Divide by 0: result is +/- inf if exception not enabled

– Underflow: non-zero result underflows to 0

– Inexact: rounded result not the actual result

14

CSC 252:

Machine-Level Programming:

Instruction Set Architectures

This Module (~4 Lectures)

15

C Program

Assembly Program

Machine Code

16

Abstract Machines

1) loops

2) conditionals
3) switch

4) Proc. call

5) Proc. return

Machine Models Data Control

1) char

2) int, float

3) double

4) struct, array

5) pointer

mem proc

C

Assembly
1) byte

2) 2-byte word

3) 4-byte long word

4) 8-byte quad word

5) contiguous byte allocation

6) address of initial byte

3) branch/jump
4) call

5) retmem regs alu

processorStack Cond.

Codes

13 14

15 16

5

9/14/2020 17

Assembly Language Characteristics
• Minimal Data Types

– “Integer” data of 1, 2, 4, or 8 bytes

• Addresses (untyped pointers)

• Data values

– Floating point data of 4, 8, or 10 bytes

– No aggregate types such as arrays or structures

• Just contiguously allocated bytes in memory

• Primitive Operations

– Perform arithmetic function on register or memory data

– Transfer data between memory and register

• Load data from memory into register

• Store register data into memory

– Transfer control

• Unconditional jumps to/from procedures

• Conditional branches

Instruction Set Architecture

• There used to be many ISAs

– Motorola, x86, ARM, Power/PowerPC, Sparc,

MIPS, IA64, z

– More consolidated today: ARM for mobile, x86

for others

• There are even more microarchitectures

– Apple/Samsung/Qualcomm have their own

microarchitecture (implementation) of the ARM

ISA

– Intel and AMD have different microarchitectures

for x86
18

Intel x86 Processors

• Dominate laptop/desktop/server market

• Evolutionary design

– Backwards compatible up until 8086, introduced in 1978

– Added more features as time goes on

• Complex instruction set computer (CISC)

– Many different instructions with many different formats

• But, only small subset encountered with Linux programs

– Hard to match performance of Reduced Instruction Set

Computers (RISC)

– But, Intel has done just that!

• In terms of speed. Less so for low power.

Intel x86 Evolution: Milestones

Name Date Transistors MHz

• 8086 1978 29K 5-10

– First 16-bit Intel processor. Basis for IBM PC & DOS

– 1MB address space

• 386 1985 275K 16-33

– First 32 bit Intel processor , referred to as IA32

– Added “flat addressing”, capable of running Unix

• Pentium 4E 2004 125M 2800-3800

– First 64-bit Intel x86 processor, referred to as x86-64

• Core 2 2006 291M 1060-3500

– First multi-core Intel processor

• Core i7 2008 731M 1700-3900

– Four cores (our shark machines)

17 18

19 20

6

Intel x86 Processors, cont.
• Machine Evolution

– 386 1985 0.3M

– Pentium 1993 3.1M

– Pentium/MMX 1997 4.5M

– PentiumPro 1995 6.5M

– Pentium III 1999 8.2M

– Pentium 4 2001 42M

– Core 2 Duo 2006 291M

– Core i7 2008 731M

• Added Features

– Instructions to support multimedia operations

– Instructions to enable more efficient conditional operations

– Transition from 32 bits to 64 bits

– More cores

2020 State of the Art
–Tiger Lake (11th generation)

• 10 nm, 9-15 Watts, 2-4 cores, mobile platforms

– Comet Lake (10th generation)

• 14 nm, up to 5.3 GHz, 8 cores/16 threads, 45

Watts

https://simplecore.intel.com/newsroom/wp-content/uploads/sites/11/2020/04/Intel-10th-Gen-H-Series-2.jpg

x86 Clones: Advanced Micro

Devices (AMD)
• Historically

–AMD has followed just behind Intel

–Getting very competitive

–Recruited top circuit designers from Digital Equipment Corp. and

other downward trending companies

–Built Opteron: tough competitor to Pentium 4

–Developed x86-64, their own extension to 64 bits

•

Intel’s 64-Bit History
• 2001: Intel Attempts Radical Shift from IA32 to IA64

– Totally different architecture (Itanium)

– Executes IA32 code only as legacy

– Performance disappointing

• 2003: AMD Steps in with Evolutionary Solution

– x86-64 (now called “AMD64”)

• Intel Felt Obligated to Focus on IA64

– Hard to admit mistake or that AMD is better

• 2004: Intel Announces EM64T extension to IA32

– Extended Memory 64-bit Technology

– Almost identical to x86-64!

• All but low-end x86 processors support x86-64

– But, lots of code still runs in 32-bit mode

21 22

23 24

7

Today: Machine Programming I:

Basics

• History of Intel processors and architectures

• C, assembly, machine code

• Assembly Basics: Registers, operands, move

• Arithmetic & logical operations

Definitions

• Architecture: (also ISA: instruction set architecture) The parts of a

processor design that one needs to understand or write

assembly/machine code.

– Examples: instruction set specification, registers.

• Microarchitecture: Implementation of the architecture.

– Examples: cache sizes and core frequency.

• Code Forms:

– Machine Code: The byte-level programs that a processor

executes

– Assembly Code: A text representation of machine code

• Example ISAs:

– Intel: x86, IA32, Itanium, x86-64

– ARM: Used in almost all mobile phones

CPU

Assembly/Machine Code View

Programmer-Visible State

– PC: Program counter

• Address of next instruction

• Called “RIP” (x86-64)

– Register file

• Heavily used program data

– Condition codes

• Store status information about most

recent arithmetic or logical operation

• Used for conditional branching

PC

Registers

Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

– Memory

• Byte addressable array

• Code and user data

• Stack to support procedures

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
– Code in files p1.c p2.c

– Compile with command: gcc –Og p1.c p2.c -o p

• Use basic optimizations (-Og) [New to recent versions of GCC]

• Put resulting binary in file p

25 26

27 28

8

29

Abstract Machines

1) loops

2) conditionals
3) switch

4) Proc. call

5) Proc. return

Machine Models Data Control

1) char

2) int, float

3) double

4) struct, array

5) pointer

mem proc

C

Assembly
1) byte

2) 2-byte word

3) 4-byte long word

4) 8-byte quad word

5) contiguous byte allocation

6) address of initial byte

3) branch/jump
4) call

5) retmem regs alu

processorStack Cond.

Codes

Pointers in C

int a = 4;

int b = 3;

int *c;

c = &a;

b += *c;

30

Compiling Into Assembly
C Code

(sum.c)long plus(long x, long y);

void sumstore(long x, long y,

long *dest)

{

long t = plus(x, y);

*dest = t;

}

Generated x86-64 Assembly

sumstore:

pushq %rbx

movq %rdx, %rbx

call plus

movq %rax, (%rbx)

popq %rbx

ret

Obtain (on shark machine) with command

gcc –Og –S sum.c

Produces file sum.s

Assembly Characteristics: Data

Types
• “Integer” data of 1, 2, 4, or 8 bytes

– Data values

– Addresses (untyped pointers)

• Floating point data of 4, 8, or 10 bytes

• Code: Byte sequences encoding series of

instructions

• No aggregate types such as arrays or structures

– Just contiguously allocated bytes in memory

29 30

31 32

9

Assembly Characteristics:

Operations
• Perform arithmetic function on register or memory

data

• Transfer data between memory and register

– Load data from memory into register

– Store register data into memory

• Transfer control

– Unconditional jumps to/from procedures

– Conditional branches

Code for sumstore

0x0400595:

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

Object Code

• Assembler

– Translates .s into .o

– Binary encoding of each instruction

– Nearly-complete image of executable

code

– Missing linkages between code in

different files

• Linker

– Resolves references between files

– Combines with static run-time libraries

• E.g., code for malloc, printf

– Some libraries are dynamically linked

• Linking occurs when program begins

execution

• Total of 14 bytes

• Each instruction
1, 3, or 5 bytes

• Starts at address
0x0400595

Machine Instruction Example
• C Code

– Store value t where designated

by dest

• Assembly

– Move 8-byte value to memory

• Quad words in x86-64 parlance

– Operands:

t: Register %rax

dest: Register %rbx

*dest: Memory M[%rbx]

• Object Code

– 3-byte instruction

– Stored at address 0x40059e

*dest = t;

movq %rax, (%rbx)

0x40059e: 48 89 03

Disassembled

Disassembling Object Code

• Disassembler

objdump –d sum

– Useful tool for examining object code

– Analyzes bit pattern of series of instructions

– Produces approximate rendition of assembly code

– Can be run on either a.out (complete executable) or .o file

0000000000400595 <sumstore>:

400595: 53 push %rbx

400596: 48 89 d3 mov %rdx,%rbx

400599: e8 f2 ff ff ff callq 400590 <plus>

40059e: 48 89 03 mov %rax,(%rbx)

4005a1: 5b pop %rbx

4005a2: c3 retq

33 34

35 36

10

Disassembled

Dump of assembler code for function sumstore:

0x0000000000400595 <+0>: push %rbx

0x0000000000400596 <+1>: mov %rdx,%rbx

0x0000000000400599 <+4>: callq 0x400590 <plus>

0x000000000040059e <+9>: mov %rax,(%rbx)

0x00000000004005a1 <+12>:pop %rbx

0x00000000004005a2 <+13>:retq

Alternate Disassembly

• Within gdb Debugger

gdb sum

disassemble sumstore

– Disassemble procedure

x/14xb sumstore

– Examine the 14 bytes starting at sumstore

Object
0x0400595:

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

What Can be Disassembled?

• Anything that can be interpreted as executable code

• Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".

Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp

30001001: 8b ec mov %esp,%ebp

30001003: 6a ff push $0xffffffff

30001005: 68 90 10 00 30 push $0x30001090

3000100a: 68 91 dc 4c 30 push $0x304cdc91

Reverse engineering forbidden by
Microsoft End User License Agreement

37 38

