

89

## Recap: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings


## This Week's Action Items

- Read Chapter 2 and start reading Chapter 3
- Finish Quiz 3 on Blackboard
- Finish Assignment 1
- Due Date: Thursday Friday September 1011 at 11:59 pm

Fractional Binary Numbers:
Examples

- Value Representation

53/4 $\quad 101.11_{2}$
$27 / 8$
$10.111_{2}$
$17 / 16$
$1.0111_{2}$

- Observations
- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- Use notation $1.0-\varepsilon$


## Representable Numbers

- Limitation \#1
- Can only exactly represent numbers of the form $x / 2^{k}$
- Other rational numbers have repeating bit representations
- Value Representation
- $1 / 3$ 0.0101010101[01] ...
- $1 / 50.001100110011[0011] \ldots 2$
- 1/10 $0.0001100110011[0011] \ldots 2$
- Limitation \#2
- Just one setting of binary point within the w bits
- Limited range of numbers (very small values? very large?)


## IEEE Floating Point

- IEEE Standard 754
- Established in 1985 as uniform standard for floating point arithmetic
- Before that, many idiosyncratic formats
- Supported by all major CPUs
- Driven by numerical concerns
- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
- Numerical analysts predominated over hardware designers in defining standard


## Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in O
- Summary

94

Floating Point Representation

- Numerical Form:


## $(-1)^{s} M 2^{E}$

- Sign bit $s$ determines whether number is negative or positive
- Significand $M$ normally a fractional value in range $[1.0,2.0$ )
- Exponent $E$ weights value by power of two
- Encoding
- MSB $s$ is sign bit $s$
- exp field encodes $E$ (but is not equal to $E$ )
- frac field encodes $M$ (but is not equal to $M$ )

```
s 年揞 frac
```

96

## Precision options

- Sinale orecision: 32 bits

| s | $\exp$ | frac |
| :--- | :--- | :--- |

18 -bits
23-bits

- Double precision: 64 bits

| s | $\exp$ | frac |  |
| :--- | :--- | :--- | ---: |
| $1 \quad$ 11-bits | 52-bits |  |  |

- Extended precision: 80 bits (Intel only)

| s | $\exp$ | frac |  |
| :--- | :--- | :--- | :--- |
| 1 | 15-bits | 63 or 64 -bits |  |

97

## 

- Value: float $\mathrm{F}=15213.0$;
$-15213_{10}=11101101101101_{2}$
$=1.1101101101101_{2} \times 2^{13}$
- Significand
$M=1 . \underline{1101101101101 ~}_{2}$
frac $=\quad 11011011011010000000000_{2}$
- Exponent
$E=13$
Bias $=127$
Exp $=140=10001100_{2}$
- Result:

01000110011011011011010000000000 s exp frac

## "Normalized" Values $\sqrt{v=(-1)^{s} \mathrm{M}^{\mathrm{t}}}$

- When: $\exp \neq 000 \ldots 0$ and $\exp \neq 111 \ldots 1$
- Exponent coded as a biased value: $\boldsymbol{E}=$ Exp - Bias
- Exp: unsigned value of exp field
- Bias $=2^{\mathrm{k}-1}$ - 1 , where $k$ is number of exponent bits
- Single precision: 127 (Exp: 1...254, E: -126...127)
- Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: $\boldsymbol{M}=1 . x x x . . . x_{2}$
- xxx...x: bits of frac field
- Minimum when frac=000...0 ( $M=1.0$ )
- Maximum when frac=111... $1(\mathrm{M}=2.0-\varepsilon)$
- Get extra leading bit for "free"

98

## Denormalized Values $\begin{gathered}V=(-1)^{s} M 2^{\varepsilon} \\ E=1-\text { Bias }\end{gathered}$

- Condition: $\exp =000$... 0
- Exponent value: $\boldsymbol{E}=1$ - Bias (instead of $\boldsymbol{E}=0$ Bias)
- Significand coded with implied leading 0: $\boldsymbol{M}=$ 0.xxx...x2
- xxx..x: bits of frac
- Cases
- $\exp =000 . .0$, frac $=000 \ldots$
- Represents zero value
- Note distinct values: +0 and -0 (why?)


## Special Values

## Visualization: Floating Point Encodings

- Condition: $\exp =111$... 1
- Case: $\exp =111 \ldots 1$, frac $=000 \ldots 0$
- Represents value $\infty$ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., 1.0/0.0 = -1.0/ $-0.0=+\infty, 1.0 /-0.0=-\infty$
- Case: $\exp =111 \ldots 1$, frac $\neq 000 \ldots 0$
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty-\infty, \infty \times 0$


## Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
- All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
- Must first compare sign bits
- Must consider -0 $=0$
- NaNs problematic
- Will be greater than any other values
- What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity



## Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

- $\mathbf{x} \operatorname{lf}_{\mathrm{f}}^{\mathrm{y}}=\operatorname{Round}(\mathrm{x}+\mathrm{y})$
- $x x_{f} y=\operatorname{Round}(x \times y)$
- Basic idea
- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent too large
- Possibly round to fit into frac

105

## Closer Look at Round-To-Even

- Default Rounding Mode
- Hard to get any other kind without dropping into assembly
- All others are statistically biased
- Sum of set of positive numbers will consistently be over- or under- estimated
- Applying to Other Decimal Places / Bit Positions
- When exactly halfway between two possible values
- Round so that least significant digit is even - E.g., round to nearest hundredth


## Rounding

- Rounding Modes (illustrate with \$ rounding)

-\$2

106

## Rounding Binary Numbers

- Binary Fractional Numbers
- "Even" when least significant bit is o
- "Half way" when bits to right of rounding position $=100 \ldots 2$
- Examples
- Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
$23 / 32 \quad 10.00011_{2} \quad 10.002 \quad$ (<1/2—down) 2
$23 / 16 \quad 10.00110_{2} 10.01_{2} \quad$ ( $>1 / 2 — u p$ ) $21 / 4$
$27 / 8 \quad 10.11100_{2} \quad 11.00_{2} \quad(1 / 2 — u p)$
$25 / 8 \quad 10.10100_{2} \quad 10.10_{2} \quad(1 / 2 — d o w n) 21 / 2$


## FP Multiplication

- $(-1)^{s 1}$ M1 $2^{E 1} \times(-1)^{s 2}$ M2 $2^{E 2}$
- Exact Result: $(-1)^{s} \boldsymbol{M} 2^{E}$
- Sign $s$ : $\quad s 1^{\wedge} s 2$
- Significand M: M1 x M2
- Exponent $E: \quad E 1+E 2$
- Fixing
- If $M \geq 2$, shift $M$ right, increment $E$
- If $E$ out of range, overflow
- Round $M$ to fit frac precision


## Mathematical Properties of FP Add

- Compare to those of Abelian Group
- Closed under addition?
- But may generate infinity or NaN
- Commutative? Yes
- Associative?
- Overflow and inexactness of rounding
- $(3.14+1 \mathrm{e} 10)-1 \mathrm{e} 10=0,3.14+(1 \mathrm{e} 10-1 \mathrm{e} 10)=3.14$
- 0 is additive identity?
- Every element has additive inverse? Yes - Yes, except for infinities \& NaNs Almost
- Monotonicity
$\begin{aligned}-a & \geq b \Rightarrow a+c\end{aligned} \geq b+c ? \quad$ Almost


## Floating Point Addition

- $(-1)^{s 1} M 12^{E 1}+(-1)^{s 2}$ M2 $2^{E 2}$

Get binary points lined up
-Assume E1 > E2

- Exact Result: $(-1)^{s} \boldsymbol{M} 2^{E}$
-Sign $s$, significand $M$ :
- Result of signed align \& add
-Exponent E: E1

- Fixing
-If $M \geq 2$, shift $M$ right, increment $E$
-if $M<1$, shift $M$ left $k$ positions, decrement $E$ by $k$
-Overflow if $E$ out of range
-Round $M$ to fit frac precision


## Mathematical Properties of FP Mult

- Compare to Commutative Ring
- Closed under multiplication?

But may generate infinity or NaN

- Multiplication Commutative? Yes
- Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: $(1 \mathrm{e} 20 * 1 \mathrm{e} 20) * 1 \mathrm{e}-20=\mathrm{inf}, 1 \mathrm{e} 20 *(1 \mathrm{e} 20 * 1 \mathrm{e}-20)=1 \mathrm{e} 20$
- 1 is multiplicative identity? Yes
- Multiplication distributes over addition? No
- Possibility of overflow, inexactness of rounding
- $1 \mathrm{e} 20 *(1 \mathrm{e} 20-1 \mathrm{e} 20)=0.0,1 \mathrm{e} 20 * 1 \mathrm{e} 20-1 \mathrm{e} 20 * 1 \mathrm{e} 20=\mathrm{NaN}$
- Monotonicity
- $a \geq b$ \& $c \geq 0 \Rightarrow a^{*} c \geq b^{*} c$ ? Almost
- Except for infinities \& NaNs


## Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

113

## Floating Point Puzzles

- For each of the following $C$ expressions, either:
- Argue that it is true for all argument values
- Explain why not true $\cdot x==$ (int) (float) $x$
- $x==$ (int) (double) $x$
int $\mathbf{x}=\ldots ; \quad \cdot \mathrm{f}==$ (float) (double) f
float $\mathrm{f}=. .$. ; $\quad \mathrm{d}==$ (double) (float) d
double $d=$..
- $\mathrm{f}=-\mathrm{-}$ (-f);
- $2 / 3=2 / 3.0$

Assume neither
$\cdot d<0.0 \quad \Rightarrow \quad\left(\left(d^{*} 2\right)<0.0\right)$

- $\mathrm{d}>\mathrm{f} \quad \Rightarrow \quad-\mathrm{f}>-\mathrm{d}$
- d * d >= 0.0
- $(\mathrm{d}+\mathrm{f})-\mathrm{d}=\mathrm{f}$


## Floating Point in C

- C Guarantees Two Levels
-float single precision
-double double precision
- Conversions/Casting
- Casting between int, float, and double changes bit representation
- double/float $\rightarrow$ int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN : Generally sets to TMin
- int $\rightarrow$ double
- Exact conversion, as long as int has $\leq 53$ bit word size
- int $\rightarrow$ float
- Will round according to rounding mode

114

## Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $\mathrm{M} \times 2^{\mathrm{E}}$
- One can reason about operations independent of implementation
- As if computed with perfect precision and then rounded
- Not the same as real arithmetic
- Violates associativity/distributivity
- Makes life difficult for compilers \& serious numerical applications programmers

