
1

1

CSC 252:

Data Representation

Bits, Bytes, and Integers

Last Week’s Action Items
• Get a CSUG account

– at https:// accounts.csug.rochester.edu/

– cycle1.csug.rochester.edu (or cycle2, cycle3)

– Get familiar with using Linux and C

– Attend an office hour this week!

• Accept the Academic Honesty Policy on blackboard

• Introduce yourself: “meet your classmates” forum

• Acquire the textbook for the course

– Read Chapter 1, start reading Chapter 2

• Finish Quiz 0
8/31/2020 2

This Week’s Action Items

• Read Chapter 2

• Finish Quiz 1 on Blackboard

• Start on Assignment 1

– Finish Pre-Assignment 1 on Blackboard

• Due Date: Thursday September 3 at noon

3 4

Main

memory
I/O

bridge
Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for

other devices such

as network adapters

hello executable

stored on disk

PC

Hardware Organization of a Typical

System

1 2

3 4

2

5

Hardware Components of a Computer

System

• Processor

– Datapath

– Control

• Memory

• Input and Output devices

6

The Principle of Abstraction

• Grouping principle

– Levels/layers of abstraction by which each

layer only needs to understand that

immediately above and below it

7

What is Computer Architecture?

• Coordination of levels of abstraction under a set

of rapidly changing forces

Application

Compiler

Operating

System

Instruction Set Architecture

Instr. Set Proc. I/O System

Digital Design

Circuit Design

8

Topics to be covered:

• Data representation and computer arithmetic

• Assembly-level programs and instruction-set
architectures

• Processor architectures

• Memory and storage hierarchies

• Performance optimization

• Exceptional control flow

• I/O devices

• Concurrency

5 6

7 8

3

9

Data Representation

• Memory: a large single-dimensional,

conventionally byte-addressable, untyped array

• Byte ordering – big versus little endian

• Possible common interpretations

– Instruction

– Integer

– Floating point

– character

Today: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers

– Representation: unsigned and signed

– Conversion, casting

– Expanding, truncating

– Addition, negation, multiplication, shifting

– Summary

• Representations in memory, pointers, strings

Everything is bits

• Each bit is 0 or 1

• By encoding/interpreting sets of bits in various ways

– Computers determine what to do (instructions)

– … and represent and manipulate numbers, sets, strings, etc…

• Why bits? Electronic Implementation

– Easy to store with bistable elements

– Reliably transmitted on noisy and inaccurate wires

0.0V

0.2V

0.9V

1.1V

0 1 0

12

Number Representation

An n digit number can be represented in any base as

MSD … LSD

n-1 … 0

The value of the ith digit d is d x base
i
, where i starts at 0

and increases from right to left

Decimal (base 10) is the natural human representation,

binary (base 2) is the natural computer representation

E.g. 11002 = 1x23 + 1x22 + 0x21 + 0x20 = 12 10

9 10

11 12

4

For example, can count in binary

• Base 2 Number Representation

– Represent 1521310 as

– Represent 1.2010 as

– Represent 1.5213 X 104 as

For example, can count in binary

• Base 2 Number Representation

– Represent 1521310 as 111011011011012

– Represent 1.2010 as

1.0011001100110011[0011]…2

– Represent 1.5213 X 104 as

1.11011011011012 X 213

Encoding Byte Values

• Byte = 8 bits

– Binary 000000002 to 111111112

– Decimal: 010 to 25510

– Hexadecimal 0016 to FF16

• Base 16 number representation

• Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

• Write FA1D37B16 in C as

– 0xFA1D37B

– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

16

Bit-Level Operations in C

• Logical

– || && !

• Bitwise

– | & ^ ~ >> <<

– Arithmetic versus logical right shift

13 14

15 16

5

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

Today: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers

– Representation: unsigned and signed

– Conversion, casting

– Expanding, truncating

– Addition, negation, multiplication, shifting

– Summary

• Representations in memory, pointers, strings

Boolean Algebra
• Developed by George Boole in 19th Century

– Algebraic representation of logic

• Encode “True” as 1 and “False” as 0
And

◼ A&B = 1 when both A=1 and B=1

Or

◼ A|B = 1 when either A=1 or B=1

Not

◼ ~A = 1 when A=0

Exclusive-Or (Xor)

◼ A^B = 1 when either A=1 or B=1, but not both

20

Algebraic Laws for Logical Expressions

• AND and OR are commutative

• AND and OR are associative

• AND is distributive over OR; OR is distributive over AND

• TRUE is the identity for AND; FALSE is the identity for OR

• FALSE annihilates AND; TRUE annihilates OR

• AND and OR are idempotent (p AND p ≡ p OR p ≡ p)

• Subsumption

– (p OR (p AND q)) ≡ (p AND (p OR q)) ≡ p

• DeMorgan’s Laws:

– NOT(p AND q) ≡ (NOT p) OR (NOT q)

– NOT(p OR q) ≡ (NOT p) AND (NOT q)

17 18

19 20

6

General Boolean Algebras

• Operate on Bit Vectors

– Operations applied bitwise

• All of the Properties of Boolean Algebra Apply

01101001

& 01010101

01000001

01101001

| 01010101

01111101

01101001

^ 01010101

00111100

~ 01010101

1010101001000001 01111101 00111100 10101010

Example: Representing &

Manipulating Sets
• Representation

– Width w bit vector represents subsets of {0, …, w–1}

– aj = 1 if j ∈ A

• 01101001 { 0, 3, 5, 6 }

• 76543210

• 01010101 { 0, 2, 4, 6 }

• 76543210

• Operations

– & Intersection 01000001 { 0, 6 }

– | Union 01111101 { 0, 2, 3, 4, 5, 6 }

– ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

– ~ Complement 10101010 { 1, 3, 5, 7 }

Bit-Level Operations in C

• Operations &, |, ~, ^ Available in C

– Apply to any “integral” data type
• long, int, short, char, unsigned

– View arguments as bit vectors

– Operations applied bit-wise

• Examples (Char data type)
– ~0x41 -> 0xBE

• ~010000012 -> 101111102

– ~0x00 -> 0xFF

• ~000000002 -> 111111112

– 0x69 & 0x55 -> 0x41

• 011010012 & 010101012 -> 010000012

– 0x69 | 0x55 -> 0x7D

• 011010012 | 010101012 -> 011111012

Contrast: Logic Operations in C

• Contrast to Logical Operators

– &&, ||, !

• View 0 as “False”

• Anything nonzero as “True”

• Always return 0 or 1

• Early termination

• Examples (char data type)
– !0x41 -> 0x00

– !0x00 -> 0x01

– !!0x41 -> 0x01

– 0x69 && 0x55 -> 0x01

– 0x69 || 0x55 -> 0x01

21 22

23 24

7

Contrast: Logic Operations in C

• Contrast to Logical Operators

– &&, ||, !

• View 0 as “False”

• Anything nonzero as “True”

• Always return 0 or 1

• Early termination

• Examples (char data type)
– !0x41 -> 0x00

– !0x00 -> 0x01

– !!0x41 -> 0x01

– 0x69 && 0x55 -> 0x01

– 0x69 || 0x55 -> 0x01

Watch out for && vs. & (and || vs. |)…

a common bug in C programming

Shift Operations
• Left Shift: x << y

– Shift bit-vector x left y positions

– Throw away extra bits on left

• Fill with 0’s on right

• Right Shift: x >> y

– Shift bit-vector x right y positions

• Throw away extra bits on right

– Logical shift

• Fill with 0’s on left

– Arithmetic shift

• Replicate most significant bit on left

• Undefined Behavior

– Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Today: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers

– Representation: unsigned and signed

– Conversion, casting

– Expanding, truncating

– Addition, negation, multiplication, shifting

– Summary

• Representations in memory, pointers, strings

• Summary

Representing Positive and

Negative Integers
• Sign-Magnitude - MSB represents sign (0 for +ve, 1 for -ve)

• One's Complement of x = 2n - x – 1 (complement individual bits)

Problem: Balanced representation, but two values for 0

Solution:

• Two's Complement of x = 2n – x (radix complement; most common

representation)

– single bit pattern for 0

– ensures that $x + (-x)$ is 0

– still keeps 1 in MSB for a -ve number (sign bit)

– 100... represents the most -ve number

– E.g. 4-bit 2's complement number 11002 = -1x23 + 1x22 + 0x21 +

0x20 = -410
28

25 26

27 28

8

29

Integer Arithmetic

• Normal base 2 2’s complement addition works

on both positive and negative numbers

• Shortcuts

– 2’s complement = 1s’ complement + 1

– 2’s complement representation of n digit

number as n+m digit number --- sign extend

Encoding Integers

short int x = 15213;

short int y = -15213;

• C short 2 bytes long

• Sign Bit

– For 2’s complement, most significant bit

indicates sign

• 0 for nonnegative

• 1 for negative

B2T (X) = −xw−1 2
w−1

+ xi 2
i

i=0

w−2

B2U(X) = xi 2
i

i=0

w−1

Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

y -15213 C4 93 11000100 10010011

Two-complement Encoding Example

(Cont.)
x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Weight 15213 -15213

1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Numeric Ranges
• Unsigned Values

– UMin = 0

000…0

– UMax = 2w – 1

111…1

• Two’s Complement Values

– TMin = –2w–1

100…0

– TMax = 2w–1 – 1

011…1

• Other Values

– Minus 1

111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111

TMax 32767 7F FF 01111111 11111111

TMin -32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Values for W = 16

29 30

31 32

9

Values for Different Word Sizes

• Observations

– |TMin | = TMax +

1

• Asymmetric range

– UMax= 2 * TMax +

1

 W

 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

 C Programming
▪ #include <limits.h>

▪ Declares constants, e.g.,

▪ ULONG_MAX

▪ LONG_MAX

▪ LONG_MIN

▪ Values platform specific

Unsigned & Signed Numeric Values
• Equivalence

– Same encodings for

nonnegative values

• Uniqueness

– Every bit pattern represents

unique integer value

– Each representable integer has

unique bit encoding

• Can Invert Mappings

– U2B(x) = B2U-1(x)

• Bit pattern for unsigned integer

– T2B(x) = B2T-1(x)

• Bit pattern for two’s comp

integer

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

Today: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers

– Representation: unsigned and signed

– Conversion, casting

– Expanding, truncating

– Addition, negation, multiplication, shifting

– Summary

• Representations in memory, pointers, strings

Byte-Oriented Memory

Organization

• Programs refer to data by address

– Conceptually, envision it as a very large array of bytes

• In reality, it’s not, but can think of it that way

– An address is like an index into that array

• and, a pointer variable stores an address

• Note: system provides private address spaces to each “process”

– Think of a process as a program being executed

– So, a program can clobber its own data, but not that of others

• • •

33 34

56 57

10

Machine Words

• Any given computer has a “Word Size”

– Nominal size of integer-valued data

• and of addresses

– Until recently, most machines used 32 bits (4 bytes) as word size

• Limits addresses to 4GB (232 bytes)

– Increasingly, machines have 64-bit word size

• Potentially, could have 18 EB (exabytes) of addressable memory

• That’s 18.4 X 1018

– Machines still support multiple data formats

• Fractions or multiples of word size

• Always integral number of bytes

Word-Oriented Memory

Organization
• Addresses Specify Byte

Locations

– Address of first byte in

word

– Addresses of

successive words differ

by 4 (32-bit) or 8 (64-

bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit

Words
Bytes Addr.

0012

0013

0014

0015

64-bit

Words

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

0000

0004

0008

0012

0000

0008

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

Byte Ordering

• So, how are the bytes within a multi-byte word

ordered in memory?

• Conventions

– Big Endian: Sun, PPC Mac, Internet

• Least significant byte has highest address

– Little Endian: x86, ARM processors running

Android, iOS, and Windows

• Least significant byte has lowest address

58 59

60 61

11

Byte Ordering Example

• Example

– Variable x has 4-byte value of 0x01234567

– Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D

3B

00

00

IA32, x86-64

3B

6D

00

00

Sun

int A = 15213;

93

C4

FF

FF

IA32, x86-64

C4

93

FF

FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00

00

00

00

6D

3B

00

00

x86-64

3B

6D

00

00

Sun

6D

3B

00

00

IA32

62 63

