

Recap: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

This Week's Action Items

- Read Chapter 2
- Finish Quiz 1 and 2 on Blackboard
- Start on Assignment 1
- Finish Pre-Assignment 1 on Blackboard
- Due Date: Thursday September 3 at noon

Contrast: Logic Operations in C

- Contrast to Logical Operators
- \&\&, ||, !
- View 0 as "False"
- Anything nonzero as "True"
- Always return 0 or 1
- Early termination
- Examples (char data type)
- ! 0×41-> 0×00
- ! 0×00-> 0×01
- !!0x41 -> 0x01
- 0x69 \&\& 0x55 -> 0x01
- 0x69 || 0×55-> 0×01

Contrast: Logic Operations in C

- Contrast to Logical Operators
- \&\&, ||, !
- View 0 as "Fa
- Anyt
- Alw Watch out for \&\& vs. \& (and || vs. |)..
- Earl a common bug in C programming
- Exampl
- ! $0 \times 41 \rightarrow 0 \times 00$
- ! 0×00-> 0×01
- !!0x41 -> 0x01
- 0x69 \&\& 0x55 -> 0x01
- 0x69 || 0×55-> 0×01

40

Integer Arithmetic

- Normal base 2 2's complement addition works on both positive and negative numbers
- Shortcuts
-2 's complement $=1$ s' complement +1
- 2's complement representation of n digit number as n+m digit number --- sign extend

Representing Positive and Negative Integers

- Sign-Magnitude - MSB represents sign (0 for + ve, 1 for -ve)
- One's Complement of $x=2^{n}-x-1$ (complement individual bits)

Problem: Balanced representation, but two values for 0

Solution:

- Two's Complement of $x=2^{n}-x$ (radix complement; most common representation)
- single bit pattern for 0
- ensures that $\$ x+(-x) \$$ is 0
- still keeps 1 in MSB for a -ve number (sign bit)
- 100... represents the most -ve number
- E.g. 4-bit 2's complement number $1100_{2}=-1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+$ $0 \times 2^{0}=-4_{10}$

41

41

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Conversion Visualized

- 2's Comp. \rightarrow

Unsigned

- Ordering Inversion
- Negative \rightarrow Big Positive

Complement Range

48

Casting Surprises

- Expression Evaluation
- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations $\langle,>,==,<=,>=$
- Examples for $W=32: \quad$ TMIN $=-2,147,483,648, ~ T M A X=2,147,483,647$
- Constant

0
-1
-1
-1
2147483647
2147483647 U
(unsigned)-1 (unsigned)- 1 214748364 147483647

Constant ${ }_{2}$
OU
0
-2147483647-
-2147483647-1
-2
2147483648 U (int) 2147483648 U

Relation

$==\quad$ unsigned
< signed
$>$ unsigned
$>\quad$ signed
$<\quad$ unsigned
$>\quad$ signed unsigned unsigned signed

Signed vs. Unsigned in C

- Constants
- By default are considered to be signed integers
- Unsigned if have "U" as suffix OU, 42949672590
- Casting
- Explicit casting between signed \& unsigned same as U2T and T2U
int $t x$, $t y$;
unsigned ux, uy;
tx $=$ (int) $u x$;
uy $=$ (unsigned) ty;

49

Summary

Casting Signed \leftrightarrow Unsigned: Basic

Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^{w}
- Expression containing signed and unsigned int
- int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Sign Extension Example

	Decimal	Hex	Binary		
x	15213	3B 6D	0011101101101101		
ix	15213	00 00 3B 6D	00000000000000000011101101101101		
y	-15213	C4 93	1100010010010011		
iy	-15213	FF FF C4 93	11111111111111111100010010010011		

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Sign Extension

- Task:
- Given w-bit signed integer x
- Convert it to $w+k$-bit integer with same value
- Rule:
- Make k copies of sign bit:
$-X^{\prime}=x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_{0}$
k copies of MSB $\quad \longleftrightarrow \longrightarrow$

53

Summary:
 Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
- Unsigned: zeros added
- Signed: sign extension
- Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
- Unsigned/signed: bits are truncated
- Result reinterpreted
- Unsigned: mod operation
- Signed: similar to mod
- For small numbers yields expected behavior

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Machine Words

- Any given computer has a "Word Size"
- Nominal size of integer-valued data
- and of addresses
- Until recently, most machines used 32 bits (4 bytes) as word size - Limits addresses to 4GB (2 2^{32} bytes)
- Increasingly, machines have 64-bit word size
- Potentially, could have 18 EB (exabytes) of addressable memory
- That's 18.4×10^{18}
- Machines still support multiple data formats
- Fractions or multiples of word size
- Always integral number of bytes
- Programs refer to data by address
- Conceptually, envision it as a very large array of bytes
- In reality, it's not, but can think of it that way
- An address is like an index into that array
- and, a pointer variable stores an address
- Note: system provides private address spaces to each "process"
- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

Word-Oriented Memory

Organizatjogn

- Addresses Specify Byte Locations
- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64bit)

59

60

Byte Ordering Example

- Example
- Variable x has 4-byte value of 0×01234567
- Address given by $\& x$ is 0×100

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
- Big Endian: Sun, PPC Mac, Internet
- Least significant byte has highest address
- Little Endian: x86, ARM processors running Android, iOS, and Windows
- Least significant byte has lowest address

61

63

Examining Data Representations

- Code to Print Byte Representation of Data
- Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:
\%p: Print pointer \%x: Print Hexadecimal

64

Representing Pointers

Different compilers \& machines assign different locations to objects
Even get different results each time run program

show_bytes Execution Example

int $a=15213$;
printf("int a = 15213; \n");
show_bytes((pointer) \&a, sizeof(int));

65

Representing Strings

- Strings in C
- Represented by array of characters
- Each character encoded in ASCII format
- Standard 7-bit encoding of character set
- Character "0" has code 0x30
- Digit i has code $0 \times 30+i$
- String should be null-terminated
- Final character $=0$
- Compatibility
- Byte ordering not an issue

IA32	Sun
31	31
38	38
32	32
31	31
33	33
00	00

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

69

71

Visualizing (Mathematical) Integer Addition

- Integer Addition -4-bit integers u, v
-Compute true sum $\operatorname{Add}_{4}(u, v)$
-Values increase linearly with u and v
-Forms planar surface

72

Two's Complement Addition

- TAdd and UAdd have Identical Bit-Level Behavior
- Signed vs. unsigned addition in C: int s, t, u, v;
$\mathrm{s}=$ (int) ((unsigned) $u+(u n s i g n e d) \mathrm{v})$;
$\mathrm{t}=\mathrm{u}+\mathrm{v}$
- Will give $s==t$

Visualizing Unsigned Addition

73

TAdd Overflow

- Functionality
- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2's comp.
 integer

Visualizing 2's Complement Addition
 NegOver

- Values
- 4-bit two's comp
- Range from -8 to +7
- Wraps Around
- If sum $\geq 2^{w-1}$
- Becomes
negative
- At most once
- If sum $<-2^{w-1}$
- Becomes positive
- At most once

76

Multiplication

- Goal: Computing Product of w-bit numbers x, y
- Either signed or unsigned
- But, exact results can be bigger than w bits
- Unsigned: up to $2 w$ bits
- Result range: $0 \leq x^{*} y \leq\left(2^{w}-1\right)^{2}=2^{2 w}-2^{w+1}+1$
- Two's complement min (negative): Up to $2 w-1$ bits
- Result range: $x^{*} y \geq\left(-2^{w-1}\right)^{*}\left(2^{w-1}-1\right)=-2^{2 w-2}+2^{w-1}$
- Two's complement max (positive): Up to $2 w$ bits, but only for $\left(\text { TMin }_{w}\right)^{2}$
- Result range: $x^{*} y \leq\left(-2^{w-1}\right)^{2}=2^{2 w-2}$
- So, maintaining exact results...
- would need to keep expanding word size with each product computed
- is done in software, if needed
- e.g., by "arbitrary precision" arithmetic packages

Exceptions

- Overflow: number too large to be represented in n bits
- Overflow condition for $\mathrm{O}=\mathrm{A}+\mathrm{B}$: !MSBA.!MSBB.MSBO + MSBA.MSBB.!MSBO
- Detection of overflow language specific - ignored in C, required in Fortran
- Memory addressing arithmetic on unsigned numbers
- An exception/interrupt generated on overflow for signed arithmetic

Unsigned Multiplication in C

Operands: w bits

True Product: 2*w bits

Discard w bits: w bits

- Standard Multiplication Function
- Ignores high order w bits
- Implements Modular Arithmetic
$\operatorname{UMult}_{w}(u, v)=u \cdot v \bmod ^{2} w$

Signed Multiplication in C

Operands: w bits
True Product: $2^{*} w$ bits

Discard w bits: w bits

- Standard Multiplication Function
- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
$-u \gg k$ gives $\left\lfloor u / 2^{k}\right\rfloor$
- Uses logical shift
k

Operands:	u	
	12^{k}	
Division:	$u / 2^{k}$	
Result:	$\left\lfloor u / 2^{k}\right\rfloor$	

	Division	Computed	Hex	Binary
\mathbf{x}	15213	15213	3B 6D	0011101101101101
$\mathbf{x ~ \gg ~ 1 ~}$	7606.5	7606	1D B6	0001110110110110
x >> 4	950.8125	950	$03 \mathrm{B6}$	0000001110110110
x >> 8	59.4257813	59	00 3B	0000000000111011

Power-of-2 Multiply with Shift

- Operation

- Examples
$-u \ll 3==u * 8$
- ($u \ll 5$) - (u $\ll 3$) == $u * 24$
- Most machines shift and add faster than multiply
- Compiler generates this code automatically

81

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
- Representations in memory, pointers, strings

Arithmetic: Basic Rules

- Addition:
- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^{w}
- Mathematical addition + possible subtraction of 2^{w}
- Signed: modified addition mod 2^{w} (result in proper range)
- Mathematical addition + possible addition or subtraction of 2^{w}
- Multiplication:
- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^{w}
- Signed: modified multiplication mod 2^{w} (result in proper range)

Counting Down with Unsigned

- Proper way to use unsigned as loop index unsigned i;
for ($\mathrm{i}=\mathrm{cnt}-2$; $\mathrm{i}<\mathrm{cnt}$; $\mathrm{i}-\mathrm{-}$)
$a[i]+=a[i+1] ;$
- See Robert Seacord, Secure Coding in C and C++
- C Standard guarantees that unsigned addition will behave like modular arithmetic
- 0-1 \rightarrow UMax
- Even better
size_t ${ }^{\text {; }}$
for (i = cnt-2; $i<c n t ; i--)$ $a[i]+=a[i+1]$;
- Data type size t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if ont is signed and <0 ?

When Should I Use Unsigned?

- Don't use without understanding implications
- Easy to make mistakes unsigned i;
for (i = cnt-2; i >= 0; i--)
$a[i]+=a[i+1]$;
- Can be very subtle
\#define DELTA sizeof(int)
int i;
for ($i=$ CNT; i-DELTA $>=0$; $i-=$ DELTA $)$

Why Should I Use Unsigned?
 (cont.)

- Do Use When Performing Modular Arithmetic - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets - Logical right shift, no sign extension

