

Recap: Bits, Bytes, and Integers

- Representing information as bits
- · Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - &&, ||, !
 - · View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination
- Examples (char data type)
 - !0x41 -> 0x00
 - !0x00 -> 0x01 - !!0x41 -> 0x01
 - 110ATI > 0AUI
 - 0x69 && 0x55 -> 0x01
- 0x69 || 0x55 -> 0x01

Integer Arithmetic
Normal base 2 2's complement addition works on both positive and negative numbers
Shortcuts

2's complement = 1s' complement + 1
2's complement representation of n digit number as n+m digit number --- sign extend

Representing Positive and Negative Integers

- Sign-Magnitude MSB represents sign (0 for +ve, 1 for -ve)
- One's Complement of x = 2ⁿ x 1 (complement individual bits)

Problem: Balanced representation, but two values for 0

Solution:

- Two's Complement of x = 2ⁿ x (radix complement; most common representation)
 - single bit pattern for 0
 - ensures that \$x + (-x)\$ is 0
 - still keeps 1 in MSB for a -ve number (sign bit)
 - 100... represents the most -ve number
 - E.g. 4-bit 2's complement number $1100_2 = -1x2^3 + 1x2^2 + 0x2^1 + 0x2^0 = -4_{10}$

41

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

43

 Expression Evaluat If there is a mix signed values Including compared 	ng Surprises	single expressior d <=, >=	
 Constant₁ 0 	Constant ₂	Relation	Evaluation
-1 -1 2147483647 2147483647U -1 (unsigned)-1 2147483647 2147483647	0 0U -2147483647-1 -2147483647-1 -2 -2 2147483648U (int) 2147483648U		unsigned signed unsigned signed signed unsigned unsigned signed

Summary Casting Signed ↔ Unsigned: Basic

Rules

- Bit pattern is maintained
- · But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int - int is cast to unsigned!!

· Representations in memory, pointers, strings

Example Data Representations

1 2 4 8	1 2 4
4	4
8	
	8
4	4
8	8
-	10/16
8	8
	-

show bytes Execution Example

int a = 15213;printf("int $a = 15213; \n"$); show bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):

0x7fffb7f71dbc	6d
0x7fffb7f71dbd	3b
0x7fffb7f71dbe	00
0x7fffb7f71dbf	00

Today: Bits, Bytes, and Integers

- Representing information as bits
- · Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

81

Today: Bits, Bytes, and Integers

- · Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary

· Representations in memory, pointers, strings

- Addition:
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition mod 2^w (result in proper range)
 Mathematical addition + possible addition or subtraction of 2^w
- Multiplication:
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication mod 2^w
 - Signed: modified multiplication mod 2^w (result in proper range)

When Should I Use Unsigned?

- Don't use without understanding implications
 - Easy to make mistakes
 unsigned i;
 for (i = cnt-2; i >= 0; i--)
 a[i] += a[i+1];
 - Can be very subtle
 #define DELTA sizeof(int)
 int i;
 for (i = CNT; i-DELTA >= 0; i-= DELTA)

85

Why Should I Use Unsigned?

- (cont.) • *Do* Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension