
1

36

CSC 252:

Data Representation

Bits, Bytes, and Integers

This Week’s Action Items

• Read Chapter 2

• Finish Quiz 1 and 2 on Blackboard

• Start on Assignment 1

– Finish Pre-Assignment 1 on Blackboard

• Due Date: Thursday September 3 at noon

37

Recap: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers

– Representation: unsigned and signed

– Conversion, casting

– Expanding, truncating

– Addition, negation, multiplication, shifting

– Summary

• Representations in memory, pointers, strings

Contrast: Logic Operations in C

• Contrast to Logical Operators

– &&, ||, !

• View 0 as “False”

• Anything nonzero as “True”

• Always return 0 or 1

• Early termination

• Examples (char data type)
– !0x41 -> 0x00

– !0x00 -> 0x01

– !!0x41 -> 0x01

– 0x69 && 0x55 -> 0x01

– 0x69 || 0x55 -> 0x01

36 37

38 39

2

Contrast: Logic Operations in C

• Contrast to Logical Operators

– &&, ||, !

• View 0 as “False”

• Anything nonzero as “True”

• Always return 0 or 1

• Early termination

• Examples (char data type)
– !0x41 -> 0x00

– !0x00 -> 0x01

– !!0x41 -> 0x01

– 0x69 && 0x55 -> 0x01

– 0x69 || 0x55 -> 0x01

Watch out for && vs. & (and || vs. |)…

a common bug in C programming

Representing Positive and

Negative Integers
• Sign-Magnitude - MSB represents sign (0 for +ve, 1 for -ve)

• One's Complement of x = 2n - x – 1 (complement individual bits)

Problem: Balanced representation, but two values for 0

Solution:

• Two's Complement of x = 2n – x (radix complement; most common

representation)

– single bit pattern for 0

– ensures that $x + (-x)$ is 0

– still keeps 1 in MSB for a -ve number (sign bit)

– 100... represents the most -ve number

– E.g. 4-bit 2's complement number 11002 = -1x23 + 1x22 + 0x21 +

0x20 = -410
41

42

Integer Arithmetic

• Normal base 2 2’s complement addition works

on both positive and negative numbers

• Shortcuts

– 2’s complement = 1s’ complement + 1

– 2’s complement representation of n digit

number as n+m digit number --- sign extend

Today: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers

– Representation: unsigned and signed

– Conversion, casting

– Expanding, truncating

– Addition, negation, multiplication, shifting

– Summary

• Representations in memory, pointers, strings

40 41

42 43

3

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed &

Unsigned

U2T

U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

• Mappings between unsigned and two’s complement

numbers:

Keep bit representations and reinterpret

Mapping Signed Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U

Mapping Signed Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation between Signed &

Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

44 45

46 47

4

0

TMax

TMin

–1

–2

0

UMax

UMax – 1

TMax

TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized

• 2’s Comp. →

Unsigned

– Ordering Inversion

– Negative → Big

Positive

Signed vs. Unsigned in C

• Constants

– By default are considered to be signed integers

– Unsigned if have “U” as suffix

0U, 4294967259U

• Casting

– Explicit casting between signed & unsigned same

as U2T and T2U
int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

– Implicit casting also occurs via assignments and

procedure calls

0 0U == unsigned

-1 0 < signed

-1 0U > unsigned

2147483647 -2147483648 > signed

2147483647U -2147483648 < unsigned

-1 -2 > signed

(unsigned) -1 -2 > unsigned

2147483647 2147483648U < unsigned

2147483647 (int) 2147483648U > signed

Casting Surprises
• Expression Evaluation

– If there is a mix of unsigned and signed in single expression,

signed values implicitly cast to unsigned

– Including comparison operations <, >, ==, <=, >=

– Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

• Constant1 Constant2 Relation Evaluation

0 0U

-1 0

-1 0U

2147483647 -2147483647-1

2147483647U -2147483647-1

-1 -2

(unsigned)-1 -2

2147483647 2147483648U

2147483647 (int) 2147483648U

Summary

Casting Signed ↔ Unsigned: Basic

Rules
• Bit pattern is maintained

• But reinterpreted

• Can have unexpected effects: adding or

subtracting 2w

• Expression containing signed and unsigned int

– int is cast to unsigned!!

48 49

50 51

5

Today: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers

– Representation: unsigned and signed

– Conversion, casting

– Expanding, truncating

– Addition, negation, multiplication, shifting

– Summary

• Representations in memory, pointers, strings

Sign Extension
• Task:

– Given w-bit signed integer x

– Convert it to w+k-bit integer with same value

• Rule:

– Make k copies of sign bit:

– X = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X • • • • • •

• • •

w

wk

Sign Extension Example

• Converting from smaller to larger integer data

type

• C automatically performs sign extension

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101

ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Summary:

Expanding, Truncating: Basic

Rules
• Expanding (e.g., short int to int)

– Unsigned: zeros added

– Signed: sign extension

– Both yield expected result

• Truncating (e.g., unsigned to unsigned short)

– Unsigned/signed: bits are truncated

– Result reinterpreted

– Unsigned: mod operation

– Signed: similar to mod

– For small numbers yields expected behavior

52 53

54 55

6

Today: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers

– Representation: unsigned and signed

– Conversion, casting

– Expanding, truncating

– Addition, negation, multiplication, shifting

– Summary

• Representations in memory, pointers, strings

Byte-Oriented Memory

Organization

• Programs refer to data by address

– Conceptually, envision it as a very large array of bytes

• In reality, it’s not, but can think of it that way

– An address is like an index into that array

• and, a pointer variable stores an address

• Note: system provides private address spaces to each “process”

– Think of a process as a program being executed

– So, a program can clobber its own data, but not that of others

• • •

Machine Words

• Any given computer has a “Word Size”

– Nominal size of integer-valued data

• and of addresses

– Until recently, most machines used 32 bits (4 bytes) as word size

• Limits addresses to 4GB (232 bytes)

– Increasingly, machines have 64-bit word size

• Potentially, could have 18 EB (exabytes) of addressable memory

• That’s 18.4 X 1018

– Machines still support multiple data formats

• Fractions or multiples of word size

• Always integral number of bytes

Word-Oriented Memory

Organization
• Addresses Specify Byte

Locations

– Address of first byte in

word

– Addresses of

successive words differ

by 4 (32-bit) or 8 (64-

bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit

Words
Bytes Addr.

0012

0013

0014

0015

64-bit

Words

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

0000

0004

0008

0012

0000

0008

56 57

58 59

7

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

Byte Ordering

• So, how are the bytes within a multi-byte word

ordered in memory?

• Conventions

– Big Endian: Sun, PPC Mac, Internet

• Least significant byte has highest address

– Little Endian: x86, ARM processors running

Android, iOS, and Windows

• Least significant byte has lowest address

Byte Ordering Example

• Example

– Variable x has 4-byte value of 0x01234567

– Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D

3B

00

00

IA32, x86-64

3B

6D

00

00

Sun

int A = 15213;

93

C4

FF

FF

IA32, x86-64

C4

93

FF

FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00

00

00

00

6D

3B

00

00

x86-64

3B

6D

00

00

Sun

6D

3B

00

00

IA32

60 61

62 63

8

Examining Data Representations

• Code to Print Byte Representation of Data

– Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:
%p: Print pointer

%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){

size_t i;

for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);

printf("\n");

}

show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):

int a = 15213;

0x7fffb7f71dbc 6d

0x7fffb7f71dbd 3b

0x7fffb7f71dbe 00

0x7fffb7f71dbf 00

Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;

int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00

char S[6] = "18213";

Representing Strings

• Strings in C

– Represented by array of characters

– Each character encoded in ASCII format

• Standard 7-bit encoding of character set

• Character “0” has code 0x30

– Digit i has code 0x30+i

– String should be null-terminated

• Final character = 0

• Compatibility

– Byte ordering not an issue

IA32 Sun

31

38

32

31

33

00

31

38

32

31

33

00

64 65

66 67

9

Integer C Puzzles

• x < 0 ((x*2) < 0)

• ux >= 0

• x & 7 == 7 (x<<30) < 0

• ux > -1

• x > y -x < -y

• x * x >= 0

• x > 0 && y > 0 x + y > 0

• x >= 0 -x <= 0

• x <= 0 -x >= 0

• (x|-x)>>31 == -1

• ux >> 3 == ux/8

• x >> 3 == x/8

• x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization

69

Today: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers

– Representation: unsigned and signed

– Conversion, casting

– Expanding, truncating

– Addition, negation, multiplication, shifting

• Representations in memory, pointers, strings

• Summary

Unsigned Addition

• Standard Addition Function

– Ignores carry output

• Implements Modular

Arithmetic

s = UAddw(u , v) =u + v

mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

68 69

70 71

10

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer

Addition
• Integer Addition

–4-bit integers u,

v

–Compute true

sum Add4(u , v)

–Values

increase

linearly with u

and v

–Forms planar

surface

Add4(u , v)

u

v

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

• Wraps Around

– If true sum ≥ 2w

– At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

Two’s Complement Addition

• TAdd and UAdd have Identical Bit-Level

Behavior

– Signed vs. unsigned addition in C:
int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);

t = u + v

– Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

TAdd Overflow

• Functionality

– True sum

requires w+1

bits

– Drop off MSB

– Treat

remaining bits

as 2’s comp.

integer

–2w –1

–2w

0

2w –1–1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

72 73

74 75

11

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement

Addition

• Values

– 4-bit two’s comp.

– Range from -8 to

+7

• Wraps Around

– If sum 2w–1

• Becomes

negative

• At most once

– If sum < –2w–1

• Becomes positive

• At most once

TAdd4(u , v)

u

v

PosOver

NegOver

Exceptions

• Overflow: number too large to be represented in

n bits

• Overflow condition for O = A+B:

!MSBA.!MSBB.MSBO + MSBA.MSBB.!MSBO

• Detection of overflow language specific

– ignored in C, required in Fortran

• Memory addressing arithmetic on unsigned

numbers

• An exception/interrupt generated on overflow for

signed arithmetic
77

Multiplication
• Goal: Computing Product of w-bit numbers x, y

– Either signed or unsigned

• But, exact results can be bigger than w bits

– Unsigned: up to 2w bits

• Result range: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1

– Two’s complement min (negative): Up to 2w-1 bits

• Result range: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

– Two’s complement max (positive): Up to 2w bits, but only for

(TMinw)2

• Result range: x * y ≤ (–2w–1) 2 = 22w–2

• So, maintaining exact results…

– would need to keep expanding word size with each product

computed

– is done in software, if needed

• e.g., by “arbitrary precision” arithmetic packages

Unsigned Multiplication in C

• Standard Multiplication Function

– Ignores high order w bits

• Implements Modular Arithmetic

UMultw(u , v) = u · v mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

76 77

78 79

12

Signed Multiplication in C

• Standard Multiplication Function

– Ignores high order w bits

– Some of which are different for

signed vs. unsigned

multiplication

– Lower bits are the same

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

Power-of-2 Multiply with Shift

• Operation

– u << k gives u * 2k

– Both signed and unsigned

• Examples

– u << 3 == u * 8

– (u << 5) – (u << 3) == u * 24

– Most machines shift and add faster than multiply

• Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2k
True Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

Unsigned Power-of-2 Divide with

Shift
• Quotient of Unsigned by Power of 2

– u >> k gives u / 2k

– Uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6 00011101 10110110

x >> 4 950.8125 950 03 B6 00000011 10110110

x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:
•••

k

••• •••

•••0 0 0••• •••

 u / 2k •••Result:

.

Binary Point

0

0 0 0•••0

Today: Bits, Bytes, and Integers

• Representing information as bits

• Bit-level manipulations

• Integers

– Representation: unsigned and signed

– Conversion, casting

– Expanding, truncating

– Addition, negation, multiplication, shifting

– Summary

• Representations in memory, pointers, strings

80 81

82 83

13

Arithmetic: Basic Rules

• Addition:

– Unsigned/signed: Normal addition followed by truncate,

same operation on bit level

– Unsigned: addition mod 2w

• Mathematical addition + possible subtraction of 2w

– Signed: modified addition mod 2w (result in proper range)

• Mathematical addition + possible addition or subtraction of 2w

• Multiplication:

– Unsigned/signed: Normal multiplication followed by truncate,

same operation on bit level

– Unsigned: multiplication mod 2w

– Signed: modified multiplication mod 2w (result in proper range)

When Should I Use Unsigned?

• Don’t use without understanding implications

– Easy to make mistakes
unsigned i;

for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1];

– Can be very subtle
#define DELTA sizeof(int)

int i;

for (i = CNT; i-DELTA >= 0; i-= DELTA)

. . .

Counting Down with Unsigned
• Proper way to use unsigned as loop index

unsigned i;

for (i = cnt-2; i < cnt; i--)

a[i] += a[i+1];

• See Robert Seacord, Secure Coding in C and C++

– C Standard guarantees that unsigned addition will

behave like modular arithmetic

• 0 – 1 → UMax

• Even better
size_t i;

for (i = cnt-2; i < cnt; i--)

a[i] += a[i+1];

– Data type size_t defined as unsigned value with length = word size

– Code will work even if cnt = UMax

– What if cnt is signed and < 0?

Why Should I Use Unsigned?

(cont.)
• Do Use When Performing Modular Arithmetic

– Multiprecision arithmetic

• Do Use When Using Bits to Represent Sets

– Logical right shift, no sign extension

84 85

86 87

