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Matrix Multiplication Example

• Major Cache Effects to Consider

– Total cache size

• Exploit temporal locality and keep the working set small (e.g., by using 

blocking)

– Block size

• Exploit spatial locality

• Description:

– Multiply N x N matrices

– O(N3) total operations

– Accesses

• N reads per source element

• N values summed per destination

– but may be able to hold in register

/* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

Variable sum

held in register

Miss Rate Analysis for Matrix 

Multiply
• Assume:

– Line size = 32B (big enough for 4 64-bit words)

– Matrix dimension (N) is very large

• Approximate 1/N as 0.0

– Cache is not even big enough to hold multiple rows

• Analysis Method:

– Look at access pattern of inner loop
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Layout of C Arrays in Memory 

(review)
• C arrays allocated in row-major order

– each row in contiguous memory locations

• Stepping through columns in one row:

– for (i = 0; i < N; i++)

sum += a[0][i];

– accesses successive elements

– if block size (B) > 4 bytes, exploit spatial locality

• compulsory miss rate = 4 bytes / B

• Stepping through rows in one column:

– for (i = 0; i < n; i++)

sum += a[i][0];

– accesses distant elements

– no spatial locality!

• compulsory miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

A B C

(i,*)

(*,j)

(i,j)

Inner loop:

Column-

wise

Row-wise Fixed

• Misses per Inner Loop Iteration:

A B C

0.25 1.0 0.0

1 2

3 4



Page 2

Today

• Cache organization and operation

• Performance impact of caches

– The memory mountain

– Rearranging loops to improve spatial locality

– Using blocking to improve temporal locality

Example: Matrix Multiplication

a b

i

j

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];

}

Cache Miss Analysis
• Assume: 

– Matrix elements are doubles

– Cache block = 8 doubles

– Cache size C << n (much smaller than n)

• First iteration:

– n/8 + n = 9n/8 misses

– Afterwards in cache:

(schematic)

*=

n

*=

8 wide

Cache Miss Analysis

• Assume: 

– Matrix elements are doubles

– Cache block = 8 doubles

– Cache size C << n (much smaller than n)

• Second iteration:

– Again:

n/8 + n = 9n/8 misses

• Total misses:

– 9n/8 * n2 = (9/8) * n3

n

*=

8 wide

16 17

18 19



Page 3

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)

for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*

c

=
c

+

Block size B x B

matmult/bmm.c

Cache Miss Analysis
• Assume: 

– Cache block = 8 doubles

– Cache size C << n (much smaller than n)

– Three blocks       fit into cache: 3B2 < C

• First (block) iteration:

– B2/8 misses for each block

– 2n/B * B2/8 = nB/4

(omitting matrix c)

– Afterwards in cache

(schematic)

*=

*=

Block size B x B

n/B blocks

Cache Miss Analysis
• Assume: 

– Cache block = 8 doubles

– Cache size C << n (much smaller than n)

– Three blocks       fit into cache: 3B2 < C

• Second (block) iteration:

– Same as first iteration

– 2n/B * B2/8 = nB/4

• Total misses:

– nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks

Blocking Summary

• No blocking: (9/8) * n3

• Blocking: 1/(4B) * n3

• Suggest largest possible block size B, but limit 3B2 < C!

• Reason for dramatic difference:

– Matrix multiplication has inherent temporal locality:

• Input data: 3n2, computation 2n3

• Every array element used O(n) times!

– Program has to be written properly
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Concluding Observations

• Programmer can optimize for cache performance

– How data structures are organized

– How data are accessed

• Nested loop structure

• Blocking is a general technique

• All systems favor “cache friendly code”

– Getting absolute optimum performance is very platform specific

• Cache sizes, line sizes, associativities, etc.

– Can get most of the advantage with generic code

• Keep working set reasonably small (temporal locality)

• Use small strides (spatial locality)

Exceptions and Processes

• Topics

– Exceptions and modes

– Processes

– Signals

class12.ppt

Control Flow

<startup>

inst1

inst2

inst3

…

instn

<shutdown>

• Computers do Only One Thing

– From startup to shutdown, a CPU simply reads and executes 

(interprets) a sequence of instructions, one at a time.

– This sequence is the system’s physical control flow (or flow of 

control).
Physical control flow

Time

Altering the Control Flow

• Up to Now: two mechanisms for changing control flow:

– Jumps and branches

– Call and return using the stack discipline.

– Both react to changes in program state.

• Insufficient  for a useful system

– Difficult for the CPU to react to changes in system 

state 

• data arrives from a disk or a network adapter

• Instruction divides by zero

• User hits ctl-c at the keyboard

• System timer expires

• System needs mechanisms for “exceptional control flow”

25 26
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Exceptional Control Flow

– Mechanisms for exceptional control flow exists at all levels of a 

computer system

• Low-level mechanism

– Exceptions and interrupts

• change in control flow in response to a system event (i.e.,  change in system 

state)

– Combination of hardware and OS software

• Higher-level mechanisms

– Process context switch

– Signals

– Nonlocal jumps (setjmp/longjmp)

– Implemented by either:

• OS software (context switch and signals) with hardware support (e.g., timer)

• C language runtime library: nonlocal jumps

• Language level (Java and C++): try/throw/catch

System context for exceptions

Local/IO Bus

Memory
Network

adapter
IDE disk

controller

Video

adapter

Display Network

Processor
Interrupt

controller

SCSI

controller

SCSI bus

Serial port 

controller

Parallel port

controller

Keyboard

controller

Keyboard Mouse PrinterModem

disk

disk CDROM

Exceptions

• An exception is a transfer of control to the OS in 

response to some event (i.e., change in processor 

state) User Process OS

exception

exception processing

by exception handler

exception 

return (optional)

event current
next

Kernel mode: privileged

User mode: non-privileged

Interrupt Vectors

– Each type of event has a 

unique exception 

number k

– Index into jump table 

(a.k.a., interrupt vector)

– Jump table entry k points 

to a function (exception 

handler).

– Handler k is called each 

time exception k occurs. 

interrupt

vector

0
1

2 ...
n-1

code for  

exception handler 0

code for 

exception handler 1

code for

exception handler 2

code for 

exception handler n-1

...

Exception 

numbers

29 30

31 32



Page 6

Asynchronous Exceptions (Interrupts)

• Caused by events external to the processor

– Indicated by setting the processor’s interrupt pin

– handler returns to “next” instruction.

• Examples:

– Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

– I/O interrupts

• hitting ctl-c at the keyboard

• arrival of a packet from a network

• arrival of a data sector from a disk

– Hard reset interrupt

• hitting the reset button

– Soft reset interrupt

• hitting ctl-alt-delete on a PC

Synchronous Exceptions

• Caused by events that occur as a result of executing an instruction:

– Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

– Faults

• Unintentional but possibly recoverable 

• Examples: page faults, protection faults, floating point exceptions

• Either re-executes faulting (“current”) instruction or aborts.

– Aborts

• unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program or halts machine

Exceptions

– Conditions under which pipeline cannot continue normal 

operation

• Causes

– Halt instruction (Current)

– Bad address for instruction or data (Previous)

– Invalid instruction (Previous)

• Desired Action

– Complete some instructions

• Either current or previous (depends on exception type)

– Discard others

– Call exception handler

• Like an unexpected procedure call

Exception Examples

• Detect in Fetch Stage

irmovl $100,%eax

rmmovl %eax,0x10000(%eax) # invalid address

jmp $-1                   # Invalid jump target

.byte 0xFF                # Invalid instruction code  

halt                      # Halt instruction

• Detect in Memory Stage

33 34
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Exceptions in Pipeline Processor 

#1

• Desired Behavior

– rmmovl should cause exception

# demo-exc1.ys

irmovl $100,%eax

rmmovl %eax,0x10000(%eax) # Invalid address

nop

.byte 0xFF                # Invalid instruction code  

0x000: irmovl $100,%eax

1 2 3 4

F D E M

F D E0x006: rmmovl %eax,0x10000(%eax)

0x00c: nop

0x00d: .byte 0xFF

F D

F

W

5

M

E

D

Exception detected

Exception detected

Exceptions in Pipeline Processor 

#2

• Desired Behavior

– No exception should occur

# demo-exc2.ys

0x000:    xorl %eax,%eax   # Set condition codes

0x002:    jne t            # Not taken

0x007:    irmovl $1,%eax

0x00d:    irmovl $2,%edx

0x013:    halt

0x014: t: .byte 0xFF       # Target

0x000:    xorl %eax,%eax

1 2 3

F D E

F D0x002:    jne t

0x014: t: .byte 0xFF

0x???: (I’m lost!)

F

Exception detected

0x007:    irmovl $1,%eax

4

M

E

F

D

W

5

M

D

F

E

E

D

M

6

M

E

W

7

W

M

8

W

9

Maintaining Exception Ordering

– Add exception status field to pipeline registers

– Fetch stage sets to either “AOK,” “ADR” (when bad fetch 

address), or “INS” (illegal instruction)

– Decode & execute pass values through

– Memory either passes through or sets to “ADR”

– Exception triggered only when instruction hits write back

F predPC

W icode valE valM dstE dstMexc

M Bchicode valE valA dstE dstMexc

E icode ifun valC valA valB dstE dstM srcA srcBexc

D rB valC valPicode ifun rAexc

Side Effects in Pipeline Processor

• Desired Behavior

– rmmovl should cause exception

– No following instruction should have any effect

# demo-exc3.ys

irmovl $100,%eax

rmmovl %eax,0x10000(%eax) # invalid address

addl %eax,%eax # Sets condition codes

0x000: irmovl $100,%eax

1 2 3 4

F D E M

F D E0x006: rmmovl %eax,0x1000(%eax)

0x00c: addl %eax,%eax F D

W

5

M

E

Exception detected

Condition code set
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Avoiding Side Effects

• Presence of Exception Should Disable State 

Update

–When detect exception in memory stage 

• Disable condition code setting in execute

• Must happen in same clock cycle

–When exception passes to write-back stage

• Disable memory write in memory stage

• Disable condition code setting in execute stage

Rest of Exception Handling

• Calling Exception Handler

–Push PC onto stack

• Either PC of faulting instruction or of next 

instruction

• Usually pass through pipeline along with exception 

status

–Jump to handler address

• Usually fixed address

• Defined as part of ISA

More on: What does the hardware do?

• Precise exceptions: every instruction before the exception has 
completed and no instruction after the exception has had a 
noticeable effect

• Restartable exception: HW provides the OS with enough information 
to tell which instructions have completed, to complete those that 
have not completed (if any), and to get the pipeline going again in 
user mode

– Squash necessary instructions

– Disable further exceptions

– Switch to kernel mode

– Push resume PC (onto kernel stack)

– Push other processor state (including condition codes)

– Jump to a predefined address

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number

 Examples:

41 42

43 44
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System Call Example: Opening File
• User calls: open(filename, options)

• Calls __open function, which invokes system call instruction 
syscall

00000000000e5d70 <__open>:
...
e5d79:   b8 02 00 00 00      mov  $0x2,%eax  # open is syscall #2
e5d7e:   0f 05               syscall # Return value in %rax
e5d80:   48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax 
...
e5dfa:   c3                  retq

User code Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi, 
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error 
corresponding to negative 
errno

Fault Example: Page Fault

User Process OS

page fault

Create page and load 

into memory
return

event 
movl

• Memory Reference

– User writes to memory location

– That portion (page) of user’s memory is 

currently on disk

– Page handler must load page into 

physical memory

– Returns to faulting instruction

– Successful on second try

int a[1000];

main ()

{

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl   $0xd,0x8049d10

Fault Example: Invalid Memory Reference

User Process OS

page fault

Detect invalid address

event 
movl

• Memory Reference

– User writes to memory location

– Address is not valid

– Page handler detects invalid address

– Sends SIGSEG signal to user process

– User process exits with “segmentation fault”

int a[1000];

main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl   $0xd,0x804e360

Signal process

Today

• Exceptional Control Flow

• Exceptions

• Processes

• Process Control
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Processes
• Definition: A process is an instance of a running program.

– One of the most profound ideas in computer science

– Not the same as “program” or “processor”

• Process provides each program with two key 

abstractions:

– Logical control flow

• Each program seems to have exclusive use of the CPU

• Provided by kernel mechanism called context switching

– Private address space

• Each program seems to have exclusive use of main memory. 

• Provided by kernel mechanism called virtual memory

CPU

Registers

Memory

Stack

Heap

Code

Data

Multiprocessing: The Illusion

• Computer runs many processes simultaneously

– Applications for one or more users

• Web browsers, email clients, editors, …

– Background tasks

• Monitoring network & I/O devices

CPU

Registers

Memory

Stack

Heap

Code

Data

CPU

Registers

Memory

Stack

Heap

Code

Data …

CPU

Registers

Memory

Stack

Heap

Code

Data

Multiprocessing Example

• Running program “top” on Mac

– System has 123 processes, 5 of which are active

– Identified by Process ID (PID)

Multiprocessing: The (Traditional) Reality

• Single processor executes multiple processes concurrently

– Process executions interleaved (multitasking) 

– Address spaces managed by virtual memory system (later in course)

– Register values for nonexecuting processes saved in memory

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

…
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Multiprocessing: The (Traditional) Reality

• Save current registers in memory

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

…

Multiprocessing: The (Traditional) Reality

• Schedule next process for execution

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

…

Multiprocessing: The (Traditional) Reality

• Load saved registers and switch address space (context switch)

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

…

Multiprocessing: The (Modern) Reality

• Multicore processors

– Multiple CPUs on single chip

– Share main memory (and some 

of the caches)

– Each can execute a separate 

process

• Scheduling of processors onto 

cores done by kernel

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

Stack

Heap

Code

Data

Saved 
registers

…

CPU

Registers
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Concurrent Processes
• Each process is a logical control flow. 

• Two processes run concurrently (are concurrent) if 

their flows overlap in time

• Otherwise, they are sequential

• Examples (running on single core):

– Concurrent: A & B, A & C

– Sequential: B & C

Process A Process B Process C

Time

User View of Concurrent Processes

• Control flows for concurrent processes are physically 

disjoint in time

• However, we can think of concurrent processes as 

running in parallel with each other

Time

Process A Process B Process C

Context Switching
• Processes are managed by a shared chunk of memory-

resident OS code called the kernel

– Important: the kernel is not a separate process, but 

rather runs as part of some existing process.

• Control flow passes from one process to another via a 

context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Process Control Block (PCB)

OS data structure (in kernel 
memory) maintaining information 
associated with each process.

• Process state

• Program counter

• CPU registers

• CPU scheduling information

• Memory-management information

• Accounting information

• Information about open files

• maybe kernel stack?

57 58
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Private Address Spaces

• Each process has its own private address space.

kernel virtual memory

(code, data, heap, stack)

memory mapped region for

shared libraries

run-time heap

(managed by malloc)

user stack

(created at runtime)

unused
0

%esp (stack pointer)

memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment

(.data, .bss)

read-only segment

(.init, .text, .rodata)

loaded from the 

executable file

0xffffffff
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