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Today

• Arrays

– One-dimensional

– Multi-dimensional (nested)

– Multi-level

• Structures

– Allocation

– Access

– Alignment

• Unions

• Floating Point

Programming with SSE3
XMM Registers

◼ 16 total, each 16 bytes

◼ 16 single-byte integers

◼ 8 16-bit integers

◼ 4 32-bit integers

◼ 4 single-precision floats

◼ 2 double-precision floats

◼ 1 single-precision float

◼ 1 double-precision float

Scalar & SIMD Operations
◼Scalar Operations: Single Precision

◼SIMD Operations: Single Precision

◼Scalar Operations: Double Precision

+

%xmm0

%xmm1

addss %xmm0,%xmm1

+ + + +

%xmm0

%xmm1

addps %xmm0,%xmm1

+

%xmm0

%xmm1

addsd %xmm0,%xmm1

FP Basics

• Arguments passed in %xmm0, %xmm1, ...

• Result returned in %xmm0

• All XMM registers caller-saved

float fadd(float x, float y)

{

return x + y;

}

double dadd(double x, double y)

{

return x + y;

}

# x in %xmm0, y in %xmm1

addss %xmm1, %xmm0

ret

# x in %xmm0, y in %xmm1   

addsd %xmm1, %xmm0

ret

1 2

3 4



CSC 252/452: Computer Organization

2

FP Memory Referencing
• Integer (and pointer) arguments passed in regular registers

• FP values passed in XMM registers

• Different mov instructions to move between XMM registers, and 

between memory and XMM registers

double dincr(double *p, double v)

{

double x = *p;

*p = x + v;

return x;

}

# p in %rdi, v in %xmm0

movapd %xmm0, %xmm1   # Copy v

movsd (%rdi), %xmm0  # x = *p

addsd %xmm0, %xmm1   # t = x + v

movsd %xmm1, (%rdi)  # *p = t

ret

Other Aspects of FP Code

• Lots of instructions

– Different operations, different formats, ...

• Floating-point comparisons

– Instructions ucomiss and ucomisd

– Set condition codes CF, ZF, and PF

• Using constant values

– Set XMM0 register to 0 with instruction

xorpd %xmm0, %xmm0

– Others loaded from memory

Breakout

Consider the following declaration of 

a two-dimensional array

int Array[n][n];

Assume n in %rdi; 

Array in %rsi;

i in %rdx;

j in %rcx

Write the assembly code (x86-based) to 

read Array[i][j] into register %eax

7

n X n Matrix Access

/* Get element a[i][j] */

int var_ele(size_t n, int a[n][n], size_t i, size_t j) 

{

return a[i][j];

}

# n in %rdi, a in %rsi, i in %rdx, j in %rcx

imulq %rdx, %rdi # n*i

leaq (%rsi,%rdi,4), %rax # a + 4*n*i

movl (%rax,%rcx,4), %eax # a + 4*n*i + 4*j

ret

 Array Elements 

▪ Address  A + i * (C * K) +  j * K

▪ C = n, K = 4

▪ Must perform integer multiplication
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CSC 252: 

Processor Architecture
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Instruction Set Architecture
• Assembly Language View

– Processor state

• Registers, memory, …

– Instructions

• addl, movl, leal, …

• How instructions are encoded as 

bytes

How do we go from a sequence of 

instructions to actual execution?

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program
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Overview of Logic Design
• Fundamental Hardware Requirements

– Communication

• How to get values from one place to another

– Computation – combinational logic

– Storage – sequential logic

– Clock to drive the next computation

• Bits are Our Friends

– Everything expressed in terms of values 0 and 1

– Communication

• Low or high voltage on wire

– Computation

• Compute Boolean functions

– Storage

• Store bits of information

Digital Signals

– Use voltage thresholds to extract discrete values from continuous 

signal

– Simplest version: 1-bit signal

• Either high range (1) or low range (0)

• With guard range between them

– Not strongly affected by noise or low quality circuit elements

• Can make circuits simple, small, and fast

Voltage

Time

0 1 0
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Basic Building Block: Transistors

13

Basic Building Block: Transistors
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CMOS: Complementary MOS 

• Use both n-type and p-type

15

Your text here

By Reza Mirhosseini - originally uploaded to en.wikipedia (file log), Public Domain, https://commons.wikimedia.org/w/index.php?curid=12271062

CMOS: NOR and NAND Gates
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https://upload.wikimedia.org/wikipedia/commons/thumb/e/e2/CMOS_NAND.s vg/280px-CMOS_NAND.svg.png

NAND Gate (NOT + AND)
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Computing with Logic Gates

–Outputs are Boolean functions of inputs

–Respond continuously to changes in inputs

• With some, small delay

a

b
out

a

b
out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Rising Delay Falling Delay
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Combinational Circuits

• Acyclic Network of Logic Gates

– Continously responds to changes on primary inputs

– Primary outputs become (after some delay) 

Boolean functions of primary inputs

Acyclic Network

Primary
Inputs

Primary
Outputs
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OF
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OF
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CF
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CF
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CF

Arithmetic Logic Unit

– Combinational logic

• Continuously responding to inputs

– Control signal selects function computed

• Corresponding to 4 arithmetic/logical operations in Y86

– Also computes values for condition codes
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Sequential Logic: Memory and Control

• Sequential:

– Output depends on the current input values and 

the previous sequence of input values.

– Are Cyclic:

• Output of a gate feeds its input at some future time.

– Memory:

• Remember results of previous operations

• Use them as inputs.

– Example of use:

• Build registers and memory units.
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Clocks

• Signal used to synchronize activity in a 

processor

• Every operation must be completed in the time 

between two clock pulses (or rising edges) ---

the cycle time

• Maximum clock rate (frequency) determined by 

the slowest logic path in the circuit (the critical 

path)

Clock

22

Edge-Triggered Latch

– Only in latching mode for 

brief period

• Rising clock edge

– Value latched depends on 

data as clock rises

– Output remains stable at 

all other times

Q+

Q–

R

S

D

C

Data

Clock
T
Trigger
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D

Q+

Time

T
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Registers

– Stores word of data

• Different from program registers seen in assembly code

– Collection of edge-triggered latches

– Loads input on rising edge of clock
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Register Operation

–Stores data bits

–For most of time acts as barrier between input 

and output

–As clock rises, loads input

State = x

Rising

clock


Output = xInput = y

x


State = y

Output = y

y
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State Machine Example

–Accumulator 

circuit

–Load or 

accumulate 

on each 

cycle

Comb. Logic

A

L

U

0

Out

MUX

0

1

Clock

In

Load

x0 x1 x2 x3 x4 x5

x0 x0+x1 x0+x1+x2 x3 x3+x4 x3+x4+x5

Clock

Load

In

Out
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Random-Access Memory

– Stores multiple words of memory

• Address input specifies which word to read or write

– Register file

• Holds values of program registers

• %eax, %esp, etc.

• Register identifier serves as address

– ID 8 implies no read or write performed

– Multiple Ports

• Can read and/or write multiple words in one cycle

– Each has separate address and data input/output

Register

file

A

B

W
dstW

srcA

valA

srcB

valB

valW

Read ports Write port

Clock
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Register File Timing
• Reading

– Like combinational logic

– Output data generated based on 

input address

• After some delay

• Writing

– Like register

– Update only as clock rises

Register

file

A

B

srcA

valA

srcB

valB

y

2
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Building Blocks

• Combinational Logic

– Compute Boolean functions of 

inputs

– Continuously respond to input 

changes

– Operate on data and implement 

control

• Storage Elements

– Store bits

– Addressable memories

– Non-addressable registers

– Loaded only as clock rises
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