
CSC 252/452: Computer Organization

1

Today

• Arrays

– One-dimensional

– Multi-dimensional (nested)

– Multi-level

• Structures

– Allocation

– Access

– Alignment

• Unions

• Floating Point

Programming with SSE3
XMM Registers

◼ 16 total, each 16 bytes

◼ 16 single-byte integers

◼ 8 16-bit integers

◼ 4 32-bit integers

◼ 4 single-precision floats

◼ 2 double-precision floats

◼ 1 single-precision float

◼ 1 double-precision float

Scalar & SIMD Operations
◼Scalar Operations: Single Precision

◼SIMD Operations: Single Precision

◼Scalar Operations: Double Precision

+

%xmm0

%xmm1

addss %xmm0,%xmm1

+ + + +

%xmm0

%xmm1

addps %xmm0,%xmm1

+

%xmm0

%xmm1

addsd %xmm0,%xmm1

FP Basics

• Arguments passed in %xmm0, %xmm1, ...

• Result returned in %xmm0

• All XMM registers caller-saved

float fadd(float x, float y)

{

return x + y;

}

double dadd(double x, double y)

{

return x + y;

}

x in %xmm0, y in %xmm1

addss %xmm1, %xmm0

ret

x in %xmm0, y in %xmm1

addsd %xmm1, %xmm0

ret

1 2

3 4

CSC 252/452: Computer Organization

2

FP Memory Referencing
• Integer (and pointer) arguments passed in regular registers

• FP values passed in XMM registers

• Different mov instructions to move between XMM registers, and

between memory and XMM registers

double dincr(double *p, double v)

{

double x = *p;

*p = x + v;

return x;

}

p in %rdi, v in %xmm0

movapd %xmm0, %xmm1 # Copy v

movsd (%rdi), %xmm0 # x = *p

addsd %xmm0, %xmm1 # t = x + v

movsd %xmm1, (%rdi) # *p = t

ret

Other Aspects of FP Code

• Lots of instructions

– Different operations, different formats, ...

• Floating-point comparisons

– Instructions ucomiss and ucomisd

– Set condition codes CF, ZF, and PF

• Using constant values

– Set XMM0 register to 0 with instruction

xorpd %xmm0, %xmm0

– Others loaded from memory

Breakout

Consider the following declaration of

a two-dimensional array

int Array[n][n];

Assume n in %rdi;

Array in %rsi;

i in %rdx;

j in %rcx

Write the assembly code (x86-based) to

read Array[i][j] into register %eax

7

n X n Matrix Access

/* Get element a[i][j] */

int var_ele(size_t n, int a[n][n], size_t i, size_t j)

{

return a[i][j];

}

n in %rdi, a in %rsi, i in %rdx, j in %rcx

imulq %rdx, %rdi # n*i

leaq (%rsi,%rdi,4), %rax # a + 4*n*i

movl (%rax,%rcx,4), %eax # a + 4*n*i + 4*j

ret

 Array Elements

▪ Address A + i * (C * K) + j * K

▪ C = n, K = 4

▪ Must perform integer multiplication

5 6

7 8

CSC 252/452: Computer Organization

3

9

CSC 252:

Processor Architecture

10

Instruction Set Architecture
• Assembly Language View

– Processor state

• Registers, memory, …

– Instructions

• addl, movl, leal, …

• How instructions are encoded as

bytes

How do we go from a sequence of

instructions to actual execution?

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program

11

Overview of Logic Design
• Fundamental Hardware Requirements

– Communication

• How to get values from one place to another

– Computation – combinational logic

– Storage – sequential logic

– Clock to drive the next computation

• Bits are Our Friends

– Everything expressed in terms of values 0 and 1

– Communication

• Low or high voltage on wire

– Computation

• Compute Boolean functions

– Storage

• Store bits of information

Digital Signals

– Use voltage thresholds to extract discrete values from continuous

signal

– Simplest version: 1-bit signal

• Either high range (1) or low range (0)

• With guard range between them

– Not strongly affected by noise or low quality circuit elements

• Can make circuits simple, small, and fast

Voltage

Time

0 1 0

9 10

11 12

CSC 252/452: Computer Organization

4

Basic Building Block: Transistors

13

Basic Building Block: Transistors

14

CMOS: Complementary MOS

• Use both n-type and p-type

15

Your text here

By Reza Mirhosseini - originally uploaded to en.wikipedia (file log), Public Domain, https://commons.wikimedia.org/w/index.php?curid=12271062

CMOS: NOR and NAND Gates

16

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e2/CMOS_NAND.s vg/280px-CMOS_NAND.svg.png

NAND Gate (NOT + AND)

13 14

15 16

CSC 252/452: Computer Organization

5

17

Computing with Logic Gates

–Outputs are Boolean functions of inputs

–Respond continuously to changes in inputs

• With some, small delay

a

b
out

a

b
out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Rising Delay Falling Delay

18

Combinational Circuits

• Acyclic Network of Logic Gates

– Continously responds to changes on primary inputs

– Primary outputs become (after some delay)

Boolean functions of primary inputs

Acyclic Network

Primary
Inputs

Primary
Outputs

19

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

Arithmetic Logic Unit

– Combinational logic

• Continuously responding to inputs

– Control signal selects function computed

• Corresponding to 4 arithmetic/logical operations in Y86

– Also computes values for condition codes

A

L

U

Y

X

X + Y

0

A

L

U

Y

X

X - Y

1

A

L

U

Y

X

X & Y

2

A

L

U

Y

X

X ^ Y

3

A

B

A

B

A

B

A

B

20

Sequential Logic: Memory and Control

• Sequential:

– Output depends on the current input values and

the previous sequence of input values.

– Are Cyclic:

• Output of a gate feeds its input at some future time.

– Memory:

• Remember results of previous operations

• Use them as inputs.

– Example of use:

• Build registers and memory units.

17 18

19 20

CSC 252/452: Computer Organization

6

21

Clocks

• Signal used to synchronize activity in a

processor

• Every operation must be completed in the time

between two clock pulses (or rising edges) ---

the cycle time

• Maximum clock rate (frequency) determined by

the slowest logic path in the circuit (the critical

path)

Clock

22

Edge-Triggered Latch

– Only in latching mode for

brief period

• Rising clock edge

– Value latched depends on

data as clock rises

– Output remains stable at

all other times

Q+

Q–

R

S

D

C

Data

Clock
T
Trigger

C

D

Q+

Time

T

23

Registers

– Stores word of data

• Different from program registers seen in assembly code

– Collection of edge-triggered latches

– Loads input on rising edge of clock

I O

Clock

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

i7

i6

i5

i4

i3

i2

i1

i0

o7

o6

o5

o4

o3

o2

o1

o0

Clock

Structure

24

Register Operation

–Stores data bits

–For most of time acts as barrier between input

and output

–As clock rises, loads input

State = x

Rising

clock

Output = xInput = y

x

State = y

Output = y

y

21 22

23 24

CSC 252/452: Computer Organization

7

25

State Machine Example

–Accumulator

circuit

–Load or

accumulate

on each

cycle

Comb. Logic

A

L

U

0

Out

MUX

0

1

Clock

In

Load

x0 x1 x2 x3 x4 x5

x0 x0+x1 x0+x1+x2 x3 x3+x4 x3+x4+x5

Clock

Load

In

Out

26

Random-Access Memory

– Stores multiple words of memory

• Address input specifies which word to read or write

– Register file

• Holds values of program registers

• %eax, %esp, etc.

• Register identifier serves as address

– ID 8 implies no read or write performed

– Multiple Ports

• Can read and/or write multiple words in one cycle

– Each has separate address and data input/output

Register

file

A

B

W
dstW

srcA

valA

srcB

valB

valW

Read ports Write port

Clock

27

Register File Timing
• Reading

– Like combinational logic

– Output data generated based on

input address

• After some delay

• Writing

– Like register

– Update only as clock rises

Register

file

A

B

srcA

valA

srcB

valB

y

2
Register

file
W

dstW

valW

Clock

x2

Rising

clock

Register

file
W

dstW

valW

Clock

y2

x2

x

2

28

Building Blocks

• Combinational Logic

– Compute Boolean functions of

inputs

– Continuously respond to input

changes

– Operate on data and implement

control

• Storage Elements

– Store bits

– Addressable memories

– Non-addressable registers

– Loaded only as clock rises

Register

file

A

B

W
dstW

srcA

valA

srcB

valB

valW

Clock

A

L

U

fun

A

B

MUX

0

1

=

Clock

25 26

27 28

