
Page 1

I/O, Networking, Concurrency

1

Unix I/O Overview

• A Linux file is a sequence of m bytes:

– B0 , B1 , , Bk , , Bm-1

• Cool fact: All I/O devices are represented as files:

– /dev/sda2 (/usr disk partition)

– /dev/tty2 (terminal)

• Even the kernel is represented as a file:

– /boot/vmlinuz-3.13.0-55-generic (kernel

image)

– /proc (kernel data structures)

2

Unix I/O Overview

• Elegant mapping of files to devices allows kernel to export simple

interface called Unix I/O:

– Opening and closing files

• open()and close()

– Reading and writing a file

• read() and write()

– Changing the current file position (seek)

• indicates next offset into file to read or write

• lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

3

File Types

• Each file has a type indicating its role in the system

– Regular file: Contains arbitrary data

– Directory: Index for a related group of files

– Socket: For communicating with a process on another

machine

• Other file types beyond our scope

– Named pipes (FIFOs)

– Symbolic links

– Character and block devices

4

1 2

3 4

Page 2

Directories

• Directory consists of an array of links

– Each link maps a filename to a file

• Each directory contains at least two entries

– . (dot) is a link to itself

– .. (dot dot) is a link to the parent directory in

the directory hierarchy (next slide)

• Commands for manipulating directories

– mkdir: create empty directory

– ls: view directory contents

– rmdir: delete empty directory 5

Directory Hierarchy

• All files are organized as a hierarchy anchored by root
directory named / (slash)

• Kernel maintains current working directory (cwd) for each

process

– Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

6

Pathnames

• Locations of files in the hierarchy denoted by pathnames

– Absolute pathname starts with ‘/’ and denotes path from root

• /home/droh/hello.c

– Relative pathname denotes path from current working directory

• ../home/droh/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

cwd: /home/bryant

7

Standard I/O Functions

• The C standard library (libc.so) contains a

collection of higher-level standard I/O functions

– Documented in Appendix B of K&R

• Examples of standard I/O functions:

– Opening and closing files (fopen and fclose)

– Reading and writing bytes (fread and fwrite)

– Reading and writing text lines (fgets and fputs)

– Formatted reading and writing (fscanf and

fprintf)

8

5 6

7 8

Page 3

Standard I/O Streams
• Standard I/O models open files as streams

– Abstraction for a file descriptor and a buffer in memory

• C programs begin life with three open streams
(defined in stdio.h)

– stdin (standard input)

– stdout (standard output)

– stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */

extern FILE *stdout; /* standard output (descriptor 1) */

extern FILE *stderr; /* standard error (descriptor 2) */

int main() {

fprintf(stdout, "Hello, world\n");

}

9

Opening Files

• Opening a file informs the kernel that you are getting ready
to access that file

• Returns a small identifying integer file descriptor

– fd == -1 indicates that an error occurred

• Each process created by a Linux shell begins life with three
open files associated with a terminal:

– 0: standard input (stdin)

– 1: standard output (stdout)

– 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

perror("open");

exit(1);

}

10

Closing Files

• Closing a file informs the kernel that you are finished

accessing that file
int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

perror("close");

exit(1);

}

11

Reading Files
• Reading a file copies bytes from the current file position to memory,

and then updates file position

• Returns number of bytes read from file fd into buf

– Return type ssize_t is signed integer

– nbytes < 0 indicates that an error occurred

– Short counts (nbytes < sizeof(buf)) are possible and are
not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");

exit(1);

}

12

9 10

11 12

Page 4

Writing Files

• Writing a file copies bytes from memory to the current file position, and

then updates current file position

• Returns number of bytes written from buf to file fd

– nbytes < 0 indicates that an error occurred

– As with reads, short counts are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes written */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");

exit(1);

}

13

File Metadata
• Metadata is data about data, in this case file

data

• Per-file metadata maintained by kernel

▪ accessed by users with the stat and

fstat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t st_dev; /* Device */

ino_t st_ino; /* inode */

mode_t st_mode; /* Protection and file type */

nlink_t st_nlink; /* Number of hard links */

uid_t st_uid; /* User ID of owner */

gid_t st_gid; /* Group ID of owner */

dev_t st_rdev; /* Device type (if inode device) */

off_t st_size; /* Total size, in bytes */

unsigned long st_blksize; /* Blocksize for filesystem I/O */

unsigned long st_blocks; /* Number of blocks allocated */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last modification */

time_t st_ctime; /* Time of last change */

}; 14

How the Unix Kernel Represents

Open Files
• Two descriptors referencing two distinct open

files. Descriptor 1 (stdout) points to terminal, and

descriptor 4 points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access
...

File size

File type

File A (terminal)

File B (disk)

Info in
stat

struct

15

File Sharing
• Two distinct descriptors sharing the same disk

file through two distinct open file table entries

– E.g., Calling open twice with the same
filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File A (disk)

File B (disk)

16

13 14

15 16

Page 5

How Processes Share Files: fork
• A child process inherits its parent’s open files

– Note: situation unchanged by exec functions (use fcntl to change)

• Before fork call:

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

17

How Processes Share Files: fork

• A child process inherits its parent’s open files

• After fork:

▪ Child’s table same as parent’s, and +1 to each refcnt

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

fd 0

fd 1

fd 2

fd 3

fd 4

Parent

Child

18

I/O Redirection
• Question: How does a shell implement I/O redirection?

linux> ls > foo.txt

• Answer: By calling the dup2(oldfd, newfd) function

– Copies (per-process) descriptor table entry oldfd to

entry newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

19

I/O Redirection Example

• Step #1: open file to which stdout should be redirected

▪ Happens in child executing shell code, before exec

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File A

File pos

refcnt=1

...

File access

...

File size

File type

File B

20

17 18

19 20

Page 6

I/O Redirection Example (cont.)
• Step #2: call dup2(4,1)

▪ cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=0

...

File pos

refcnt=2

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

21

Networking

22

A Client-Server Transaction
• Most network applications are based on the client-server model:

– A server process and one or more client processes

– Server manages some resource

– Server provides service by manipulating resource for clients

– Server activated by request from client (vending machine analogy)

Client
process

Server
process

1. Client sends request

3. Server sends response4. Client
handles

response

2. Server
handles
request

Resource

Note: clients and servers are processes running on hosts
(can be the same or different hosts) 23

Hardware Organization of a Network

Host

main
memory

I/O
bridge

MI

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

Expansion slots

network
adapter

network 24

21 22

23 24

Page 7

Computer Networks
• A network is a hierarchical system of boxes and wires organized

by geographical proximity

– SAN (System Area Network) spans cluster or machine room

• Switched Ethernet, Quadrics QSW, …

– LAN (Local Area Network) spans a building or campus

• Ethernet is most prominent example

– WAN (Wide Area Network) spans country or world

• Typically high-speed point-to-point lines

• An internetwork (internet) is an interconnected set of networks

– The Global IP Internet (uppercase “I”) is the most famous
example of an internet (lowercase “i”)

• Let’s see how an internet is built from the ground up

25

Conceptual View of LANs

• For simplicity, hubs, bridges, and wires are often

shown as a collection of hosts attached to a

single wire:

host host host...

26

Logical Structure of an internet

• Ad hoc interconnection of networks

– No particular topology

– Vastly different router & link capacities

• Send packets from source to destination by hopping through

networks

– Router forms bridge from one network to another

– Different packets may take different routes

router

router

router
router

router

router

host
host

27

The Notion of an internet Protocol

• How is it possible to send bits across

incompatible LANs and WANs?

• Solution: protocol software running on each

host and router

– Protocol is a set of rules that governs how

hosts and routers should cooperate when

they transfer data from network to network.

– Smooths out the differences between the

different networks
28

25 26

27 28

Page 8

What Does an Internet Protocol Do?

• Provides a naming scheme

– An internet protocol defines a uniform format for host

addresses

– Each host (and router) is assigned at least one of

these internet addresses that uniquely identifies it

• Provides a delivery mechanism

– An internet protocol defines a standard transfer unit

(packet)

– Packet consists of header and payload

• Header: contains info such as packet size, source and

destination addresses

• Payload: contains data bits sent from source host 29

LAN2

Transferring internet Data Via

Encapsulation

protocol
software

client

LAN1
adapter

Host ALAN1

data(1)

data PH FH1(4)

data PH FH2(6)

data(8)

data PH FH2 (5)

LAN2 frame

protocol
software

LAN1
adapter

LAN2
adapter

Router
data PH(3) FH1

data PH FH1(2)

internet packet

LAN1 frame

(7) data PH FH2

protocol
software

server

LAN2
adapter

Host B

PH: Internet packet header
FH: LAN frame header

30

Other Issues
• We are glossing over a number of important

questions:

– What if different networks have different maximum

frame sizes? (segmentation)

– How do routers know where to forward frames?

– How are routers informed when the network

topology changes?

– What if packets get lost?

• These (and other) questions are addressed by the

area of systems known as computer networking

31

Global IP Internet (upper case)
• Most famous example of an internet

• Based on the TCP/IP protocol family

– IP (Internet Protocol) :

• Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

– UDP (Unreliable Datagram Protocol)

• Uses IP to provide unreliable datagram delivery from
process-to-process

– TCP (Transmission Control Protocol)

• Uses IP to provide reliable byte streams from process-to-process
over connections

• Accessed via a mix of Unix file I/O and functions from the sockets
interface

32

29 30

31 32

Page 9

Hardware and Software

Organization

of an Internet Application

TCP/IP

Client

Network
adapter

Global IP Internet

TCP/IP

Server

Network
adapter

Internet client host Internet server host

Sockets interface
(system calls)

Hardware interface
(interrupts)

User code

Kernel code

Hardware
and firmware

33

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit IP addresses

– 128.2.203.179

2. The set of IP addresses is mapped to a set of identifiers

called Internet domain names

– 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate with a

process on another Internet host over a connection

34

Aside: IPv4 and IPv6

• The original Internet Protocol, with its 32-bit addresses, is known

as Internet Protocol Version 4 (IPv4)

• 1996: Internet Engineering Task Force (IETF) introduced Internet

Protocol Version 6 (IPv6) with 128-bit addresses

– Intended as the successor to IPv4

• As of 2015, vast majority of Internet traffic still carried by IPv4

– Only 4% of users access Google services using IPv6.

• We will focus on IPv4, but will show you how to write networking

code that is protocol-independent.

35

(1) IP Addresses
• 32-bit IP addresses are stored in an IP address struct

– IP addresses are always stored in memory in network

byte order

(big-endian byte order)

– True in general for any integer transferred in a packet

header from one machine to another.

• E.g., the port number used to identify an Internet connection.

/* Internet address structure */

struct in_addr {

uint32_t s_addr; /* network byte order (big-endian) */

};

36

33 34

35 36

Page 10

Dotted Decimal Notation

• By convention, each byte in a 32-bit IP address is

represented by its decimal value and separated by

a period

• IP address: 0x8002C2F2 = 128.2.194.242

• Use getaddrinfo and getnameinfo functions

(described later) to convert between IP addresses

and dotted decimal format.

37

(2) Internet Domain Names

.net .edu .gov .com

cmu berkeleymit

cs ece

whaleshark
128.2.210.175

ics

unnamed root

pdl

www
128.2.131.66

amazon

www
176.32.98.166

First-level domain names

Second-level domain names

Third-level domain names

38

Domain Naming System (DNS)

• The Internet maintains a mapping between IP

addresses and domain names in a huge worldwide

distributed database called DNS

• Conceptually, programmers can view the DNS

database as a collection of millions of host entries.

–Each host entry defines the mapping between a

set of domain names and IP addresses.

–In a mathematical sense, a host entry is an

equivalence class of domain names and IP

addresses.
39

Properties of DNS Mappings

• Can explore properties of DNS mappings using nslookup

– Output edited for brevity

• Each host has a locally defined domain name localhost

which always maps to the loopback address 127.0.0.1

• Use hostname to determine real domain name of local

host:

linux> nslookup localhost

Address: 127.0.0.1

linux> hostname

whaleshark.ics.cs.cmu.edu

40

37 38

39 40

Page 11

Properties of DNS Mappings

(cont)
• Simple case: one-to-one mapping between domain name

and IP address:

• Multiple domain names mapped to the same IP address:

linux> nslookup whaleshark.ics.cs.cmu.edu

Address: 128.2.210.175

linux> nslookup cs.mit.edu

Address: 18.62.1.6

linux> nslookup eecs.mit.edu

Address: 18.62.1.6

41

Properties of DNS Mappings (cont)

• Multiple domain names mapped to multiple IP addresses:

• Some valid domain names don’t map to any IP address:

linux> nslookup www.twitter.com

Address: 199.16.156.6

Address: 199.16.156.70

Address: 199.16.156.102

Address: 199.16.156.230

linux> nslookup twitter.com

Address: 199.16.156.102

Address: 199.16.156.230

Address: 199.16.156.6

Address: 199.16.156.70

linux> nslookup ics.cs.cmu.edu

*** Can't find ics.cs.cmu.edu: No answer 42

(3) Internet Connections
• Clients and servers communicate by sending streams of bytes over

connections. Each connection is:

– Point-to-point: connects a pair of processes.

– Full-duplex: data can flow in both directions at the same time,

– Reliable: stream of bytes sent by the source is eventually
received by the destination in the same order it was sent.

• A socket is an endpoint of a connection

– Socket address is an IPaddress:port pair

• A port is a 16-bit integer that identifies a process:

– Ephemeral port: Assigned automatically by client kernel when
client makes a connection request.

– Well-known port: Associated with some service provided by a
server (e.g., port 80 is associated with Web servers)

43

Well-known Ports and Service

Names

• Popular services have permanently assigned well-known

ports and corresponding well-known service names:

– echo server: 7/echo

– ssh servers: 22/ssh

– email server: 25/smtp

– Web servers: 80/http

• Mappings between well-known ports and service names
is contained in the file /etc/services on each Linux

machine.

44

41 42

43 44

Page 12

Anatomy of a Connection

• A connection is uniquely identified by the socket
addresses of its endpoints (socket pair)

– (cliaddr:cliport, servaddr:servport)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)

Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

45

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

46

Sockets Interface

• Set of system-level functions used in

conjunction with Unix I/O to build network

applications.

• Created in the early 80’s as part of the original

Berkeley distribution of Unix that contained an

early version of the Internet protocols.

• Available on all modern systems

– Unix variants, Windows, OS X, IOS,

Android, ARM 47

Client Server

Sockets

• What is a socket?

– To the kernel, a socket is an endpoint of communication

– To an application, a socket is a file descriptor that lets the

application read/write from/to the network

• Remember: All Unix I/O devices, including networks, are modeled

as files

• Clients and servers communicate with each other by reading from

and writing to socket descriptors

• The main distinction between regular file I/O and socket I/O is how

the application “opens” the socket descriptors

clientfd serverfd

48

45 46

47 48

Page 13

Socket System Calls for

Connection-Oriented Protocol: TCP

Concurrency

50

Why employ concurrency?

• Resource sharing, information exchange, collaboration

• Tolerate delays such as slow I/O devices

• Provide good response times, e.g., with human

interaction

• Separate logical tasks

– Garbage collection

– Separate logical flow for each client in a concurrent

server

• Reduce latency by deferring work

• Execute in parallel on hardware such as multicore

machines

51

Concurrent Programming is Hard!

• The human mind tends to be sequential

• The notion of time is often misleading

• Thinking about all possible sequences of events in a

computer system is at least error prone and

frequently impossible

52

49 50

51 52

Page 14

What do we need?

• Communication

– Messages versus shared memory

• Coordinate

– Synchronization

• Mutual exclusion

• Events

53

Why is Parallel Computing Hard?

• Amdahl’s law – insufficient available parallelism

– Speedup = 1/(fraction_enhanced/speedup +
(1-fraction_enhanced)

• Overhead and complexity of communication and
coordination

– Classic problems concurrent programs
• Races: outcome depends on arbitrary scheduling decisions elsewhere in the

system

• Deadlock: improper resource allocation prevents forward progress

• Livelock / Starvation / Fairness: external events and/or system scheduling

decisions can prevent sub-task progress

• Portability – knowledge of underlying
architecture often required

54

Steps in the Parallelization Process

• Decomposition into tasks

• Assignment to processes

• Orchestration – communication of data,

synchronization among processes

55

Breakout: Sum Vector Elements in

Parallel

56

#define LENGTH 1024

int array[LENGTH]; /* initialized elsewhere */

int sum = 0;

void combine()

{

long int i;

for (i = 0; i < LENGTH; i++) {

sum = sum + array[i];

}

}

53 54

55 56

Page 15

Types of Dependences

• Flow (or True) dependence – RAW

• Anti-dependence – WAR

• Output dependence – WAW

57

Synchronization

• Basic types

– Mutual exclusion

– Events

• Components of a synchronization operation

– Acquire method (enter critical section,
proceed past event)

– Waiting algorithm (busy waiting, blocking)

– Release method (enable others to proceed)

58

Data Sharing: CPU and Cache Support

• Special atomic read-modify-write instructions

– Test-and-set, fetch-and-increment, load-

linked/store conditional

• Coherent caches

– Ensure that modifications propagate to copies

59

Lessons Learned

• Must have parallelization strategy

– Partition into K independent parts

– Divide-and-conquer

• Inner loops must be synchronization free

– Synchronization operations very expensive

• Beware of Amdahl’s Law

– Serial code can become bottleneck

• You can do it!

– Achieving modest levels of parallelism is not difficult

– Set up experimental framework and test multiple

strategies
66

57 58

59 66

