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Dynamic Memory Allocation

Harsh Reality

• Memory Matters

• Memory is not unbounded

– It must be allocated and managed

– Many applications are memory dominated

• Especially those based on complex, graph algorithms

• Memory referencing bugs especially pernicious

– Effects are distant in both time and space

• Memory performance is not uniform

– Cache and virtual memory effects can greatly affect program 

performance

– Adapting program to characteristics of memory system can lead 

to major speed improvements

Dynamic Memory Allocation

• Programmers use 

dynamic memory 

allocators (such as 
malloc) to acquire VM 

at run time

– For data structures 

whose size is only 

known at runtime

• Dynamic memory 

allocators manage an 

area of process virtual 

memory known as the 

heap

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

“brk” ptr

Application

Dynamic Memory Allocator

Heap

Additional 

heap 

memory 

requested 

from the 

OS using 
sbrk

Dynamic Memory Allocation

• Allocator maintains heap as collection of variable 

sized blocks, which are either allocated or free

• Types of allocators

– Explicit allocator:  application allocates and frees 

space 

• E.g.,  malloc and free in C

– Implicit allocator: application allocates, but does 

not free space

• E.g. garbage collection in Java, ML, and Lisp

• Will discuss explicit memory management today
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The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

– Successful:

• Returns a pointer to a memory block of at least size bytes

aligned to an 8-byte (x86) or  16-byte (x86-64) boundary

• If size == 0, returns NULL

– Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

– Returns the block pointed at by p to pool of available memory

– p must come from a previous call to malloc or realloc

Other functions

– calloc: Version of malloc that initializes allocated block to zero. 

– realloc: Changes the size of a previously allocated block.

– sbrk: Used internally by allocators to grow or shrink the heap

malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}

Assumptions Made in This Lecture

• Memory is word addressed.

• Words are int-sized.

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)
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Constraints
• Applications

– Can issue arbitrary sequence of malloc and free requests

– free request must be to a malloc’d block

• Allocators

– Can’t control number or size of allocated blocks

– Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests

– Must allocate blocks from free memory

• i.e., can only place allocated blocks in free memory

– Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes

– Can manipulate and modify only free memory

– Can’t move the allocated blocks once they are malloc’d

• i.e., compaction is not allowed

Performance Goal: Throughput

• Given some sequence of malloc and free requests:

– R0, R1, ..., Rk, ... , Rn-1

• Goals: maximize throughput and peak memory utilization

– These goals are often conflicting

• Throughput:

– Number of completed requests per unit time

– Example:

• 5,000  malloc calls and 5,000 free calls in 10 seconds 

• Throughput is 1,000 operations/second

Performance Goal: Peak Memory 

Utilization
• Given some sequence of malloc and free requests:

– R0, R1, ..., Rk, ... , Rn-1

• Def: Aggregate payload Pk

– malloc(p) results in a block with a payload of p
bytes

– After request Rk has completed, the aggregate 
payload Pk is the sum of currently allocated payloads

• Def: Current heap size Hk

– Assume Hk is monotonically nondecreasing
• i.e., heap only grows when allocator uses sbrk

• Def: Peak memory utilization after k+1 requests 

– Uk = ( maxi<=k Pi )  /  Hk

Fragmentation

• Poor memory utilization caused by fragmentation

– internal fragmentation

– external fragmentation
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Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is smaller than 

block size

• Caused by 

– Overhead of maintaining heap data structures

– Padding for alignment purposes

– Explicit policy decisions 
(e.g., to return a big block to satisfy a small request)

• Depends only on the pattern of previous requests

– Thus, easy to measure

Payload
Internal 

fragmentation

Block

Internal 
fragmentation

External Fragmentation

• Occurs when there is enough aggregate heap memory, but no single 

free block is large enough

• Depends on the pattern of future requests

– Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)
Oops! (what would happen now?)

Implementation Issues

• How do we know how much memory to free given just a pointer?

• How do we keep track of the free blocks?

• What do we do with the extra space when allocating a structure that 

is smaller than the free block it is placed in?

• How do we pick a block to use for allocation -- many might fit?

• How do we reinsert freed block?

Knowing How Much to Free

• Standard method

– Keep the length of a block in the word preceding the block.

• This word is often called the header field or header

– Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5
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Keeping Track of Free Blocks

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list

– Different free lists for different size classes

• Method 4: Blocks sorted by size

– Can use a balanced tree (e.g. Red-Black tree) with pointers 
within each free block, and the length used as a key

5 4 26
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Today

• Simple virtual memory system example

• Linux and the virtual memory system

• Dynamic memory allocation

– Explicit memory management

• Implicit free lists

Method 1: Implicit List
• For each block we need both size and allocation status

– Could store this information in two words: wasteful!

• Standard trick

– If blocks are aligned, some low-order address bits are always 0

– Instead of storing an always-0 bit, use it as a allocated/free flag

– When reading size word, must mask out this bit

Size

1 word

Format of
allocated and

free blocks
Payload

a = 1: Allocated block  
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Detailed Implicit Free List Example

Start 
of 

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded

Headers: labeled with size in bytes/allocated bit
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Implicit List: Finding a Free Block
• First fit:

– Search list from beginning, choose first free block that fits:

– Can take linear time in total number of blocks (allocated and free)

– In practice it can cause “splinters” at beginning of list

• Next fit:

– Like first fit, but search list starting where previous search finished

– Should often be faster than first fit: avoids re-scanning unhelpful blocks

– Some research suggests that fragmentation is worse

• Best fit:

– Search the list, choose the best free block: fits, with fewest bytes left over

– Keeps fragments small—usually improves memory utilization

– Will typically run slower than first fit

p = start; 

while ((p < end) &&     \\ not passed end

((*p & 1) ||     \\ already allocated

(*p <= len)))  \\ too small 

p = p + (*p & -2);    \\ goto next block (word addressed)

Implicit List: Allocating in Free Block
• Allocating in a free block: splitting

– Since allocated space might be smaller than free 

space, we might want to split the block

void addblock(ptr p, int len) {

int newsize = ((len + 1) >> 1) << 1;  // round up to even

int oldsize = *p & -2;                // mask out low bit

*p = newsize | 1;                     // set new length

if (newsize < oldsize)

*(p+newsize) = oldsize - newsize;   // set length in remaining

}                                       //   part of block

4 4 26

4 24

p

24

addblock(p, 4)

Implicit List: Freeing a Block
• Simplest implementation:

– Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

– But can lead to “false fragmentation” 

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Implicit List: Coalescing
• Join (coalesce) with next/previous blocks, if they are free

– Coalescing with next block

– But how do we coalesce with previous block?

void free_block(ptr p) {

*p = *p & -2;          // clear allocated flag

next = p + *p;         // find next block

if ((*next & 1) == 0)

*p = *p + *next;    // add to this block if

}                         //    not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone
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Implicit List: Bidirectional Coalescing 
• Boundary tags [Knuth73]

– Replicate size/allocated word at “bottom” (end) of free blocks

– Allows us to traverse the “list” backwards, but requires extra space

– Important and general technique!

Size

Format of
allocated and

free blocks

Payload and
padding

a = 1: Allocated block  
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

m1 1

Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

Constant Time Coalescing (Case 2)

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 1

m1 1

n+m2 0

n+m2 0
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m1 0

Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

m1 0

Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Summary of Key Allocator Policies
• Placement policy:

– First-fit, next-fit, best-fit, etc.

– Trades off lower throughput for less fragmentation

– Interesting observation: segregated free lists (next lecture) 
approximate a best fit placement policy without having to search 
entire free list

• Splitting policy:

– When do we go ahead and split free blocks?

– How much internal fragmentation are we willing to tolerate?

• Coalescing policy:

– Immediate coalescing: coalesce each time free is called 

– Deferred coalescing: try to improve performance of free by 
deferring coalescing until needed. Examples:

• Coalesce as you scan the free list for malloc

• Coalesce when the amount of external fragmentation reaches some 
threshold

Implicit Lists: Summary
• Implementation: very simple

• Allocate cost: 

– linear time worst case

• Free cost: 

– constant time worst case

▪ even with coalescing

• Memory usage: 

– will depend on placement policy

– First-fit, next-fit or best-fit

• Not used in practice for malloc/free because of linear-time 
allocation

▪ used in many special purpose applications

• However, the concepts of splitting and boundary tag coalescing are 
general to all allocators
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Today

• Simple virtual memory system example

• Linux and the virtual memory system

• Dynamic memory allocation

– Explicit memory management

• Implicit free lists

• Explicit free lists

Keeping Track of Free Blocks

• Method 1: Implicit free list using length—links all blocks

• Method 2: Explicit free list among the free blocks using pointers

• Method 3: Segregated free list

– Different free lists for different size classes

• Method 4: Blocks sorted by size

– Can use a balanced tree (e.g. Red-Black tree) with pointers within 
each free block, and the length used as a key

5 4 26

5 4 26

Explicit Free Lists

• Maintain list(s) of free blocks, not all blocks

– The “next” free block could be anywhere

• So we need to store forward/back pointers, not just sizes

– Still need boundary tags for coalescing

– Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Explicit Free Lists

• Logically:

• Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C
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Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Freeing With Explicit Free Lists
• Insertion policy: Where in the free list do you put a newly freed 

block?

• LIFO (last-in-first-out) policy

– Insert freed block at the beginning of the free list

– Pro: simple and constant time

– Con: studies suggest fragmentation is worse than address 

ordered

• Address-ordered policy

– Insert freed blocks so that free list blocks are always in address 

order: 

addr(prev) < addr(curr) < addr(next)

– Con: requires search

– Pro: studies suggest fragmentation is lower than LIFO

Freeing With a LIFO Policy (Case 1)

• Insert the freed block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic

Freeing With a LIFO Policy (Case 2)

• Splice out successor block, coalesce both memory blocks 
and insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphic
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Freeing With a LIFO Policy (Case 3)

• Splice out predecessor block, coalesce both memory 
blocks, and insert the new block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic
Freeing With a LIFO Policy (Case 4)

• Splice out predecessor and successor blocks, 
coalesce all 3 memory blocks and insert the new 
block at the root of the list

free( )

Root

Before

Root

After

conceptual graphic

Explicit List Summary
• Comparison to implicit list:

– Allocate is linear time in number of free blocks instead of all

blocks

• Much faster when most of the memory is full 

– Slightly more complicated allocate and free since needs to splice 

blocks in and out of the list

– Some extra space for the links (2 extra  words needed for each 

block)

• Does this increase internal fragmentation?

• Most common use of linked lists is in conjunction with segregated 
free lists

– Keep multiple linked lists of different size classes, or possibly for 

different types of objects

Today

• Simple virtual memory system example

• Linux and the virtual memory system

• Dynamic memory allocation

– Explicit memory management

• Implicit free lists

• Explicit free lists

• Segregated free lists
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Keeping Track of Free Blocks

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list

– Different free lists for different size classes

• Method 4: Blocks sorted by size

– Can use a balanced tree (e.g. Red-Black tree) with pointers 
within each free block, and the length used as a key

5 4 26

5 4 26

Segregated List (Seglist) Allocators

• Each size class of blocks has its own free list

• Often have separate classes for each small size

• For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

Seglist Allocator
• Given an array of free lists, each one for some size class

• To allocate a block of size n:

– Search appropriate free list for block of size m > n

– If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)

– If no block is found, try next larger class

– Repeat until block is found

• If no block is found:

– Request additional heap memory from OS (using sbrk())

– Allocate block of n bytes from this new memory

– Place remainder as a single free block in largest size class.

Seglist Allocator (cont.)

• To free a block:

– Coalesce and place on appropriate list

• Advantages of seglist allocators

– Higher throughput

• log time for power-of-two size classes

– Better memory utilization

• First-fit search of segregated free list approximates a best-fit 

search of entire heap

• Extreme case: Giving each block its own size class is 

equivalent to best-fit
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More Info on Allocators

• D. Knuth, “The Art of Computer Programming”, 2nd edition, 
Addison Wesley, 1973

– The classic reference on dynamic storage allocation

• Wilson et al, “Dynamic Storage Allocation: A Survey and 
Critical Review”, Proc. 1995 Int’l Workshop on Memory 
Management, Kinross, Scotland, Sept, 1995.

– Comprehensive survey

– Available from CS:APP student site (csapp.cs.cmu.edu)

Communication and Interaction:

I/O and Networking

Unix I/O Overview

• A Linux file is a sequence of m bytes:

– B0 , B1 , .... , Bk , .... , Bm-1

• Cool fact: All I/O devices are represented as files:

– /dev/sda2 (/usr disk partition)

– /dev/tty2 (terminal)

• Even the kernel is represented as a file:

– /boot/vmlinuz-3.13.0-55-generic (kernel 

image) 

– /proc (kernel data structures)
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Unix I/O Overview

• Elegant mapping of files to devices allows kernel to export simple 

interface called Unix I/O:

– Opening and closing files

• open()and close()

– Reading and writing a file

• read() and  write()

– Changing the current file position (seek)

• indicates next offset into file to read or write

• lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

File Types

• Each file has a type indicating its role in the system

– Regular file: Contains arbitrary data

– Directory:  Index for a related group of files

– Socket: For communicating with a process on another 

machine

• Other file types beyond our scope

– Named pipes (FIFOs)

– Symbolic links

– Character and block devices

Regular Files

• A regular file contains arbitrary data

• Applications often distinguish between text files and binary files

– Text files are regular files with only ASCII or Unicode 
characters

– Binary files are everything else
• e.g., object files, JPEG images

– Kernel doesn’t know the difference!

• Text file is sequence of text lines

– Text line is sequence of chars terminated by newline char 
(‘\n’)

• Newline is 0xa, same as ASCII line feed character (LF)

• End of line (EOL) indicators in other systems

– Linux and Mac OS: ‘\n’ (0xa)
• line feed (LF)

– Windows and Internet protocols: ‘\r\n’ (0xd 0xa) 
• Carriage return (CR) followed by line feed (LF)

Directories

• Directory consists of an array of links

– Each link maps a filename to a file

• Each directory contains at least two entries

– . (dot) is  a link to itself

– .. (dot dot) is a link to the parent directory in 

the directory hierarchy (next slide)

• Commands for manipulating directories

– mkdir: create empty directory

– ls: view directory contents

– rmdir: delete empty directory
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Directory Hierarchy

• All files are organized as a hierarchy anchored by root 
directory named / (slash)

• Kernel maintains current working directory (cwd) for each 

process

– Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

Pathnames

• Locations of files in the hierarchy denoted by pathnames

– Absolute pathname starts with ‘/’ and denotes path from root

• /home/droh/hello.c

– Relative pathname denotes path from current working directory

• ../home/droh/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

cwd: /home/bryant

Opening Files

• Opening a file informs the kernel that you are getting ready 
to access that file

• Returns a small identifying integer file descriptor

– fd == -1 indicates that an error occurred

• Each process created by a Linux shell begins life with three 
open files associated with a terminal:

– 0: standard input (stdin)

– 1: standard output (stdout)

– 2: standard error (stderr)

int fd;   /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

perror("open");

exit(1);

}

Closing Files

• Closing a file informs the kernel that you are finished 

accessing that file
int fd;     /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

perror("close");

exit(1);

}

85 86

87 88



Page 16

Reading Files
• Reading a file copies bytes from the current file position 

to memory, and then updates file position

• Returns number of bytes read from file fd into buf

– Return type ssize_t is signed integer

– nbytes < 0 indicates that an error occurred

– Short counts (nbytes < sizeof(buf) ) are 
possible and are not errors!

char buf[512];

int fd;       /* file descriptor */

int nbytes;   /* number of bytes read */

/* Open file fd ...  */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");

exit(1);

}

Writing Files
• Writing a file copies bytes from memory to the current file 

position, and then updates current file position

• Returns number of bytes written from buf to file fd

– nbytes < 0 indicates that an error occurred

– As with reads, short counts are possible and are not 

errors!

char buf[512];

int fd;       /* file descriptor */

int nbytes;   /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");

exit(1);

}

File Metadata
• Metadata is data about data, in this case file 

data

• Per-file metadata maintained by kernel

▪ accessed by users with the stat and 

fstat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t st_dev;      /* Device */

ino_t         st_ino;      /* inode */

mode_t st_mode;     /* Protection and file type */

nlink_t st_nlink;    /* Number of hard links */

uid_t st_uid;      /* User ID of owner */

gid_t st_gid;      /* Group ID of owner */

dev_t st_rdev;     /* Device type (if inode device) */

off_t st_size;     /* Total size, in bytes */

unsigned long st_blksize;  /* Blocksize for filesystem I/O */

unsigned long st_blocks;   /* Number of blocks allocated */

time_t st_atime;    /* Time of last access */

time_t st_mtime;    /* Time of last modification */

time_t st_ctime;    /* Time of last change */

};

How the Unix Kernel Represents 

Open Files
• Two descriptors referencing two distinct open 

files. Descriptor 1 (stdout) points to terminal, and 

descriptor 4 points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in 
stat

struct
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