
Page 1

Dynamic Memory Allocation

Harsh Reality

• Memory Matters

• Memory is not unbounded

– It must be allocated and managed

– Many applications are memory dominated

• Especially those based on complex, graph algorithms

• Memory referencing bugs especially pernicious

– Effects are distant in both time and space

• Memory performance is not uniform

– Cache and virtual memory effects can greatly affect program

performance

– Adapting program to characteristics of memory system can lead

to major speed improvements

Dynamic Memory Allocation

• Programmers use

dynamic memory

allocators (such as
malloc) to acquire VM

at run time

– For data structures

whose size is only

known at runtime

• Dynamic memory

allocators manage an

area of process virtual

memory known as the

heap

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

“brk” ptr

Application

Dynamic Memory Allocator

Heap

Additional

heap

memory

requested

from the

OS using
sbrk

Dynamic Memory Allocation

• Allocator maintains heap as collection of variable

sized blocks, which are either allocated or free

• Types of allocators

– Explicit allocator: application allocates and frees

space

• E.g., malloc and free in C

– Implicit allocator: application allocates, but does

not free space

• E.g. garbage collection in Java, ML, and Lisp

• Will discuss explicit memory management today

27 28

29 30

Page 2

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

– Successful:

• Returns a pointer to a memory block of at least size bytes

aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• If size == 0, returns NULL

– Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

– Returns the block pointed at by p to pool of available memory

– p must come from a previous call to malloc or realloc

Other functions

– calloc: Version of malloc that initializes allocated block to zero.

– realloc: Changes the size of a previously allocated block.

– sbrk: Used internally by allocators to grow or shrink the heap

malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}

Assumptions Made in This Lecture

• Memory is word addressed.

• Words are int-sized.

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

32 33

34 35

Page 3

Constraints
• Applications

– Can issue arbitrary sequence of malloc and free requests

– free request must be to a malloc’d block

• Allocators

– Can’t control number or size of allocated blocks

– Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests

– Must allocate blocks from free memory

• i.e., can only place allocated blocks in free memory

– Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes

– Can manipulate and modify only free memory

– Can’t move the allocated blocks once they are malloc’d

• i.e., compaction is not allowed

Performance Goal: Throughput

• Given some sequence of malloc and free requests:

– R0, R1, ..., Rk, ... , Rn-1

• Goals: maximize throughput and peak memory utilization

– These goals are often conflicting

• Throughput:

– Number of completed requests per unit time

– Example:

• 5,000 malloc calls and 5,000 free calls in 10 seconds

• Throughput is 1,000 operations/second

Performance Goal: Peak Memory

Utilization
• Given some sequence of malloc and free requests:

– R0, R1, ..., Rk, ... , Rn-1

• Def: Aggregate payload Pk

– malloc(p) results in a block with a payload of p
bytes

– After request Rk has completed, the aggregate
payload Pk is the sum of currently allocated payloads

• Def: Current heap size Hk

– Assume Hk is monotonically nondecreasing
• i.e., heap only grows when allocator uses sbrk

• Def: Peak memory utilization after k+1 requests

– Uk = (maxi<=k Pi) / Hk

Fragmentation

• Poor memory utilization caused by fragmentation

– internal fragmentation

– external fragmentation

36 37

38 39

Page 4

Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is smaller than

block size

• Caused by

– Overhead of maintaining heap data structures

– Padding for alignment purposes

– Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

• Depends only on the pattern of previous requests

– Thus, easy to measure

Payload
Internal

fragmentation

Block

Internal
fragmentation

External Fragmentation

• Occurs when there is enough aggregate heap memory, but no single

free block is large enough

• Depends on the pattern of future requests

– Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)
Oops! (what would happen now?)

Implementation Issues

• How do we know how much memory to free given just a pointer?

• How do we keep track of the free blocks?

• What do we do with the extra space when allocating a structure that

is smaller than the free block it is placed in?

• How do we pick a block to use for allocation -- many might fit?

• How do we reinsert freed block?

Knowing How Much to Free

• Standard method

– Keep the length of a block in the word preceding the block.

• This word is often called the header field or header

– Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5

40 41

42 43

Page 5

Keeping Track of Free Blocks

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list

– Different free lists for different size classes

• Method 4: Blocks sorted by size

– Can use a balanced tree (e.g. Red-Black tree) with pointers
within each free block, and the length used as a key

5 4 26

5 4 26

Today

• Simple virtual memory system example

• Linux and the virtual memory system

• Dynamic memory allocation

– Explicit memory management

• Implicit free lists

Method 1: Implicit List
• For each block we need both size and allocation status

– Could store this information in two words: wasteful!

• Standard trick

– If blocks are aligned, some low-order address bits are always 0

– Instead of storing an always-0 bit, use it as a allocated/free flag

– When reading size word, must mask out this bit

Size

1 word

Format of
allocated and

free blocks
Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded

Headers: labeled with size in bytes/allocated bit

44 45

46 47

Page 6

Implicit List: Finding a Free Block
• First fit:

– Search list from beginning, choose first free block that fits:

– Can take linear time in total number of blocks (allocated and free)

– In practice it can cause “splinters” at beginning of list

• Next fit:

– Like first fit, but search list starting where previous search finished

– Should often be faster than first fit: avoids re-scanning unhelpful blocks

– Some research suggests that fragmentation is worse

• Best fit:

– Search the list, choose the best free block: fits, with fewest bytes left over

– Keeps fragments small—usually improves memory utilization

– Will typically run slower than first fit

p = start;

while ((p < end) && \\ not passed end

((*p & 1) || \\ already allocated

(*p <= len))) \\ too small

p = p + (*p & -2); \\ goto next block (word addressed)

Implicit List: Allocating in Free Block
• Allocating in a free block: splitting

– Since allocated space might be smaller than free

space, we might want to split the block

void addblock(ptr p, int len) {

int newsize = ((len + 1) >> 1) << 1; // round up to even

int oldsize = *p & -2; // mask out low bit

*p = newsize | 1; // set new length

if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining

} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

Implicit List: Freeing a Block
• Simplest implementation:

– Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

– But can lead to “false fragmentation”

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Implicit List: Coalescing
• Join (coalesce) with next/previous blocks, if they are free

– Coalescing with next block

– But how do we coalesce with previous block?

void free_block(ptr p) {

*p = *p & -2; // clear allocated flag

next = p + *p; // find next block

if ((*next & 1) == 0)

*p = *p + *next; // add to this block if

} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

48 49

50 51

Page 7

Implicit List: Bidirectional Coalescing
• Boundary tags [Knuth73]

– Replicate size/allocated word at “bottom” (end) of free blocks

– Allows us to traverse the “list” backwards, but requires extra space

– Important and general technique!

Size

Format of
allocated and

free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

m1 1

Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

Constant Time Coalescing (Case 2)

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 1

m1 1

n+m2 0

n+m2 0

52 53

54 55

Page 8

m1 0

Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

m1 0

Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Summary of Key Allocator Policies
• Placement policy:

– First-fit, next-fit, best-fit, etc.

– Trades off lower throughput for less fragmentation

– Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

• Splitting policy:

– When do we go ahead and split free blocks?

– How much internal fragmentation are we willing to tolerate?

• Coalescing policy:

– Immediate coalescing: coalesce each time free is called

– Deferred coalescing: try to improve performance of free by
deferring coalescing until needed. Examples:

• Coalesce as you scan the free list for malloc

• Coalesce when the amount of external fragmentation reaches some
threshold

Implicit Lists: Summary
• Implementation: very simple

• Allocate cost:

– linear time worst case

• Free cost:

– constant time worst case

▪ even with coalescing

• Memory usage:

– will depend on placement policy

– First-fit, next-fit or best-fit

• Not used in practice for malloc/free because of linear-time
allocation

▪ used in many special purpose applications

• However, the concepts of splitting and boundary tag coalescing are
general to all allocators

56 57

59 60

Page 9

Today

• Simple virtual memory system example

• Linux and the virtual memory system

• Dynamic memory allocation

– Explicit memory management

• Implicit free lists

• Explicit free lists

Keeping Track of Free Blocks

• Method 1: Implicit free list using length—links all blocks

• Method 2: Explicit free list among the free blocks using pointers

• Method 3: Segregated free list

– Different free lists for different size classes

• Method 4: Blocks sorted by size

– Can use a balanced tree (e.g. Red-Black tree) with pointers within
each free block, and the length used as a key

5 4 26

5 4 26

Explicit Free Lists

• Maintain list(s) of free blocks, not all blocks

– The “next” free block could be anywhere

• So we need to store forward/back pointers, not just sizes

– Still need boundary tags for coalescing

– Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Explicit Free Lists

• Logically:

• Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

61 62

63 64

Page 10

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Freeing With Explicit Free Lists
• Insertion policy: Where in the free list do you put a newly freed

block?

• LIFO (last-in-first-out) policy

– Insert freed block at the beginning of the free list

– Pro: simple and constant time

– Con: studies suggest fragmentation is worse than address

ordered

• Address-ordered policy

– Insert freed blocks so that free list blocks are always in address

order:

addr(prev) < addr(curr) < addr(next)

– Con: requires search

– Pro: studies suggest fragmentation is lower than LIFO

Freeing With a LIFO Policy (Case 1)

• Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

Freeing With a LIFO Policy (Case 2)

• Splice out successor block, coalesce both memory blocks
and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic

65 66

67 68

Page 11

Freeing With a LIFO Policy (Case 3)

• Splice out predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic
Freeing With a LIFO Policy (Case 4)

• Splice out predecessor and successor blocks,
coalesce all 3 memory blocks and insert the new
block at the root of the list

free()

Root

Before

Root

After

conceptual graphic

Explicit List Summary
• Comparison to implicit list:

– Allocate is linear time in number of free blocks instead of all

blocks

• Much faster when most of the memory is full

– Slightly more complicated allocate and free since needs to splice

blocks in and out of the list

– Some extra space for the links (2 extra words needed for each

block)

• Does this increase internal fragmentation?

• Most common use of linked lists is in conjunction with segregated
free lists

– Keep multiple linked lists of different size classes, or possibly for

different types of objects

Today

• Simple virtual memory system example

• Linux and the virtual memory system

• Dynamic memory allocation

– Explicit memory management

• Implicit free lists

• Explicit free lists

• Segregated free lists

69 70

71 72

Page 12

Keeping Track of Free Blocks

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list

– Different free lists for different size classes

• Method 4: Blocks sorted by size

– Can use a balanced tree (e.g. Red-Black tree) with pointers
within each free block, and the length used as a key

5 4 26

5 4 26

Segregated List (Seglist) Allocators

• Each size class of blocks has its own free list

• Often have separate classes for each small size

• For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

Seglist Allocator
• Given an array of free lists, each one for some size class

• To allocate a block of size n:

– Search appropriate free list for block of size m > n

– If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)

– If no block is found, try next larger class

– Repeat until block is found

• If no block is found:

– Request additional heap memory from OS (using sbrk())

– Allocate block of n bytes from this new memory

– Place remainder as a single free block in largest size class.

Seglist Allocator (cont.)

• To free a block:

– Coalesce and place on appropriate list

• Advantages of seglist allocators

– Higher throughput

• log time for power-of-two size classes

– Better memory utilization

• First-fit search of segregated free list approximates a best-fit

search of entire heap

• Extreme case: Giving each block its own size class is

equivalent to best-fit

73 74

75 76

Page 13

More Info on Allocators

• D. Knuth, “The Art of Computer Programming”, 2nd edition,
Addison Wesley, 1973

– The classic reference on dynamic storage allocation

• Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

– Comprehensive survey

– Available from CS:APP student site (csapp.cs.cmu.edu)

Communication and Interaction:

I/O and Networking

Unix I/O Overview

• A Linux file is a sequence of m bytes:

– B0 , B1 , , Bk , , Bm-1

• Cool fact: All I/O devices are represented as files:

– /dev/sda2 (/usr disk partition)

– /dev/tty2 (terminal)

• Even the kernel is represented as a file:

– /boot/vmlinuz-3.13.0-55-generic (kernel

image)

– /proc (kernel data structures)

77 78

79 80

Page 14

Unix I/O Overview

• Elegant mapping of files to devices allows kernel to export simple

interface called Unix I/O:

– Opening and closing files

• open()and close()

– Reading and writing a file

• read() and write()

– Changing the current file position (seek)

• indicates next offset into file to read or write

• lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

File Types

• Each file has a type indicating its role in the system

– Regular file: Contains arbitrary data

– Directory: Index for a related group of files

– Socket: For communicating with a process on another

machine

• Other file types beyond our scope

– Named pipes (FIFOs)

– Symbolic links

– Character and block devices

Regular Files

• A regular file contains arbitrary data

• Applications often distinguish between text files and binary files

– Text files are regular files with only ASCII or Unicode
characters

– Binary files are everything else
• e.g., object files, JPEG images

– Kernel doesn’t know the difference!

• Text file is sequence of text lines

– Text line is sequence of chars terminated by newline char
(‘\n’)

• Newline is 0xa, same as ASCII line feed character (LF)

• End of line (EOL) indicators in other systems

– Linux and Mac OS: ‘\n’ (0xa)
• line feed (LF)

– Windows and Internet protocols: ‘\r\n’ (0xd 0xa)
• Carriage return (CR) followed by line feed (LF)

Directories

• Directory consists of an array of links

– Each link maps a filename to a file

• Each directory contains at least two entries

– . (dot) is a link to itself

– .. (dot dot) is a link to the parent directory in

the directory hierarchy (next slide)

• Commands for manipulating directories

– mkdir: create empty directory

– ls: view directory contents

– rmdir: delete empty directory

81 82

83 84

Page 15

Directory Hierarchy

• All files are organized as a hierarchy anchored by root
directory named / (slash)

• Kernel maintains current working directory (cwd) for each

process

– Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

Pathnames

• Locations of files in the hierarchy denoted by pathnames

– Absolute pathname starts with ‘/’ and denotes path from root

• /home/droh/hello.c

– Relative pathname denotes path from current working directory

• ../home/droh/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

cwd: /home/bryant

Opening Files

• Opening a file informs the kernel that you are getting ready
to access that file

• Returns a small identifying integer file descriptor

– fd == -1 indicates that an error occurred

• Each process created by a Linux shell begins life with three
open files associated with a terminal:

– 0: standard input (stdin)

– 1: standard output (stdout)

– 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

perror("open");

exit(1);

}

Closing Files

• Closing a file informs the kernel that you are finished

accessing that file
int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

perror("close");

exit(1);

}

85 86

87 88

Page 16

Reading Files
• Reading a file copies bytes from the current file position

to memory, and then updates file position

• Returns number of bytes read from file fd into buf

– Return type ssize_t is signed integer

– nbytes < 0 indicates that an error occurred

– Short counts (nbytes < sizeof(buf)) are
possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");

exit(1);

}

Writing Files
• Writing a file copies bytes from memory to the current file

position, and then updates current file position

• Returns number of bytes written from buf to file fd

– nbytes < 0 indicates that an error occurred

– As with reads, short counts are possible and are not

errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");

exit(1);

}

File Metadata
• Metadata is data about data, in this case file

data

• Per-file metadata maintained by kernel

▪ accessed by users with the stat and

fstat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t st_dev; /* Device */

ino_t st_ino; /* inode */

mode_t st_mode; /* Protection and file type */

nlink_t st_nlink; /* Number of hard links */

uid_t st_uid; /* User ID of owner */

gid_t st_gid; /* Group ID of owner */

dev_t st_rdev; /* Device type (if inode device) */

off_t st_size; /* Total size, in bytes */

unsigned long st_blksize; /* Blocksize for filesystem I/O */

unsigned long st_blocks; /* Number of blocks allocated */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last modification */

time_t st_ctime; /* Time of last change */

};

How the Unix Kernel Represents

Open Files
• Two descriptors referencing two distinct open

files. Descriptor 1 (stdout) points to terminal, and

descriptor 4 points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat

struct

89 90

91 92

