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Recap of Last Week

• Programmer’s view of virtual memory

– Each process has its own private linear address space

– Cannot be corrupted by other processes

• System view of virtual memory

– Uses memory efficiently by caching virtual memory pages

• Efficient only because of locality

– Simplifies memory management and programming

– Simplifies protection by providing a convenient interpositioning point to 

check permissions

• Challenges addressed:

– Double (or more) the number of memory accesses

• Solution: translation lookaside buffer (TLB)

– Size of translation information (page table)

• Solution: multi-level page tables

Today

• Simple virtual memory system example

• Linux and the virtual memory system

• Dynamic memory allocation

Review of Symbols
• Basic Parameters

– N = 2n : Number of addresses in virtual address space

– M = 2m : Number of addresses in physical address space

– P = 2p : Page size (bytes)

• Components of the virtual address (VA)

– TLBI: TLB index

– TLBT: TLB tag

– VPO: Virtual page offset 

– VPN: Virtual page number 

• Components of the physical address (PA)

– PPO: Physical page offset (same as VPO)

– PPN: Physical page number

– CO: Byte offset within cache line

– CI: Cache index

– CT: Cache tag

Simple Memory System Example

• Addressing

– 14-bit virtual addresses

– 12-bit physical address

– Page size = 64 bytes
13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

1 2

3 4
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1. Simple Memory System TLB

• 16 entries

• 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

2. Simple Memory System Page Table

Only show first 16 entries (out of 256)

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

3. Simple Memory System Cache
• 16 lines, 4-byte block size

• Physically addressed

• Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

Address Translation Example #1

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __              Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

0001010 11010

0 0x5 0x0D Y 0x36

5 6

7 8
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Address Translation Example #2

Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO___ CI___ CT ____ Hit? __              Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 N N 0x28

0000000 00111

0 0x8 0x28 N Mem

Today

• Simple virtual memory system example

• Linux and the virtual memory system

• Dynamic memory allocation

Virtual Address Space of a Linux 

Process

Kernel code and data

Memory mapped region 
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical  for 
each 

process

Process-specific 
data

structs (ptables,
task and mm 

structs, kernel 
stack)

Kernel
virtual 
memory

0x00400000

Different for 
each 

process

vm_next

vm_next

Linux Organizes VM as Collection of 

“Areas” 
task_struct

mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

• pgd: 
– Page global directory 

address

– Points to L1 page table

• vm_prot:
– Read/write permissions for 

this area

• vm_flags
– Pages shared with other 

processes or private to 

this process

vm_flags

vm_flags

vm_flags

9 10

11 12
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Linux Page Fault Handling 

read
1

write

2

read

3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries

vm_flags

vm_flags

vm_flags

Segmentation fault:
accessing a non-existing page

Normal page fault

Protection exception:
e.g., violating permission by 

writing to a read-only page (Linux 
reports as Segmentation fault)

Memory Mapping
• VM areas initialized by associating them with disk objects.

– Process is known as memory mapping. 

• Area can be backed by (i.e., get its initial values from) :

– Regular file on disk (e.g., an executable object file)

• Initial page bytes come from a section of a file

– Anonymous file (e.g., nothing)

• First fault will allocate a physical page full of 0's (demand-zero 

page)

• Once the page is written to (dirtied), it is like any other page

• Dirty pages are copied back and forth between memory 

and a special swap file

Sharing Revisited: Shared Objects

• Process 1  

maps the 

shared 

object 

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Sharing Revisited: Shared Objects

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Process 2 maps 
the shared 
object. 

 Notice how the virtual 
addresses can be 
different

13 14

15 16
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Sharing Revisited: 

Private Copy-on-write (COW) 

Objects

• Two processes 

mapping a 

private copy-on-

write (COW)  

object 

• Area flagged as 

private copy-on-

write

• PTEs in private 

areas are 

flagged as read-

only
Private 

copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Private
copy-on-write

area

Sharing Revisited: 

Private Copy-on-write (COW) 

Objects
• Instruction 

writing to private 

page triggers 

protection fault. 

• Handler creates 

new R/W page. 

• Instruction 

restarts upon 

handler return. 

• Copying deferred 

as long as 

possible!
Private  

copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to private
copy-on-write

page

The fork Function Revisited

• VM and memory mapping explain how fork provides private address 

space for each process. 

• To create virtual address for new new process

– Create exact copies of current mm_struct, vm_area_struct, 

and page tables. 

– Flag each page in both processes as read-only

– Flag each vm_area_struct in both processes as private COW

• On return, each process has exact copy of virtual memory

• Subsequent writes create new pages using COW mechanism.

The execve Function Revisited
• To load and run a new 

program a.out in the current 
process using execve:

• Free vm_area_struct’s
and page tables for old areas

• Create vm_area_struct’s
and page tables for new areas

– Programs and initialized 
data backed by object 
files

– .bss and stack backed 
by anonymous files 

• Set PC to entry point in 
.text

– Linux will fault in code and 
data pages as needed

Memory mapped region 
for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Private, demand-zero

libc.so

.data

.text
Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

a.out

.data

.text

17 18

19 20
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User-Level Memory Mapping
void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

• Map len bytes starting at offset offset of the file 

specified by file description fd, preferably at address 

start

– start: may be 0 for “pick an address”

– prot: PROT_READ, PROT_WRITE, ...

– flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, 

...

• Return a pointer to start of mapped area (may not be 
start)

User-Level Memory Mapping
void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

len bytes

start

(or address 
chosen by kernel)

Process virtual memoryDisk file specified by 
file descriptor fd

len bytes

offset

(bytes)

0 0

Example: Using mmap to Copy Files

/* mmapcopy driver */
int main(int argc, char **argv)
{

struct stat stat;
int fd;

/* Check for required cmd line arg */
if (argc != 2) {

printf("usage: %s <filename>\n",
argv[0]);

exit(0);
}

/* Copy input file to stdout */
fd = open(argv[1], O_RDONLY, 0);
fstat(fd, &stat);
mmapcopy(fd, stat.st_size);
exit(0);

}

 Copying a file to stdout without transferring data to user space

#include "csapp.h"

void mmapcopy(int fd, int size)
{

/* Ptr to memory mapped area */
char *bufp;

bufp = mmap(NULL, size, 
PROT_READ,
MAP_PRIVATE, 
fd, 0);

Write(1, bufp, size);
return;

}

mmapcopy.c mmapcopy.c

Memory System Summary
• Cache Memory 

– Purely a speed-up technique

– Behavior invisible to application programmer and OS

– Implemented totally in hardware

• Virtual Memory

– Supports many OS-related functions

• Process creation

– Initial

– Forking children

• Task switching

• Protection

– Combination of hardware & software implementation

• Software management of tables, allocations

• Hardware access of tables

• Hardware caching of table entries (TLB)

21 22

23 24
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Today

• Simple virtual memory system example

• Linux and the virtual memory system

• Dynamic memory allocation

Dynamic Memory Allocation

class12.ppt

Harsh Reality

• Memory Matters

• Memory is not unbounded

– It must be allocated and managed

– Many applications are memory dominated

• Especially those based on complex, graph algorithms

• Memory referencing bugs especially pernicious

– Effects are distant in both time and space

• Memory performance is not uniform

– Cache and virtual memory effects can greatly affect program 

performance

– Adapting program to characteristics of memory system can lead 

to major speed improvements

25 26

27 28
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Dynamic Memory Allocation

• Programmers use 

dynamic memory 

allocators (such as 
malloc) to acquire VM 

at run time

– For data structures 

whose size is only 

known at runtime

• Dynamic memory 

allocators manage an 

area of process virtual 

memory known as the 

heap

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

“brk” ptr

Application

Dynamic Memory Allocator

Heap

Additional 

heap 

memory 

requested 

from the 

OS using 
sbrk

Dynamic Memory Allocation

• Allocator maintains heap as collection of variable 

sized blocks, which are either allocated or free

• Types of allocators

– Explicit allocator:  application allocates and frees 

space 

• E.g.,  malloc and free in C

– Implicit allocator: application allocates, but does 

not free space

• E.g. garbage collection in Java, ML, and Lisp

• Will discuss explicit memory management today

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

– Successful:

• Returns a pointer to a memory block of at least size bytes

aligned to an 8-byte (x86) or  16-byte (x86-64) boundary

• If size == 0, returns NULL

– Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

– Returns the block pointed at by p to pool of available memory

– p must come from a previous call to malloc or realloc

Other functions

– calloc: Version of malloc that initializes allocated block to zero. 

– realloc: Changes the size of a previously allocated block.

– sbrk: Used internally by allocators to grow or shrink the heap

malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++)

p[i] = i;

/* Return allocated block to the heap */
free(p);

}

29 30

32 33
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Assumptions Made in This Lecture

• Memory is word addressed.

• Words are int-sized.

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Constraints
• Applications

– Can issue arbitrary sequence of malloc and free requests

– free request must be to a malloc’d block

• Allocators

– Can’t control number or size of allocated blocks

– Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests

– Must allocate blocks from free memory

• i.e., can only place allocated blocks in free memory

– Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes

– Can manipulate and modify only free memory

– Can’t move the allocated blocks once they are malloc’d

• i.e., compaction is not allowed

Performance Goal: Throughput

• Given some sequence of malloc and free requests:

– R0, R1, ..., Rk, ... , Rn-1

• Goals: maximize throughput and peak memory utilization

– These goals are often conflicting

• Throughput:

– Number of completed requests per unit time

– Example:

• 5,000  malloc calls and 5,000 free calls in 10 seconds 

• Throughput is 1,000 operations/second

34 35

36 37
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Performance Goal: Peak Memory 

Utilization
• Given some sequence of malloc and free requests:

– R0, R1, ..., Rk, ... , Rn-1

• Def: Aggregate payload Pk

– malloc(p) results in a block with a payload of p
bytes

– After request Rk has completed, the aggregate 
payload Pk is the sum of currently allocated payloads

• Def: Current heap size Hk

– Assume Hk is monotonically nondecreasing
• i.e., heap only grows when allocator uses sbrk

• Def: Peak memory utilization after k+1 requests 

– Uk = ( maxi<=k Pi )  /  Hk

Fragmentation

• Poor memory utilization caused by fragmentation

– internal fragmentation

– external fragmentation

Internal Fragmentation
• For a given block, internal fragmentation occurs if payload is smaller than 

block size

• Caused by 

– Overhead of maintaining heap data structures

– Padding for alignment purposes

– Explicit policy decisions 
(e.g., to return a big block to satisfy a small request)

• Depends only on the pattern of previous requests

– Thus, easy to measure

Payload
Internal 

fragmentation

Block

Internal 
fragmentation

External Fragmentation

• Occurs when there is enough aggregate heap memory, but no single 

free block is large enough

• Depends on the pattern of future requests

– Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)
Oops! (what would happen now?)

38 39

40 41
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Implementation Issues

• How do we know how much memory to free given just a pointer?

• How do we keep track of the free blocks?

• What do we do with the extra space when allocating a structure that 

is smaller than the free block it is placed in?

• How do we pick a block to use for allocation -- many might fit?

• How do we reinsert freed block?

Knowing How Much to Free

• Standard method

– Keep the length of a block in the word preceding the block.

• This word is often called the header field or header

– Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

5

Keeping Track of Free Blocks

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list

– Different free lists for different size classes

• Method 4: Blocks sorted by size

– Can use a balanced tree (e.g. Red-Black tree) with pointers 
within each free block, and the length used as a key

5 4 26

5 4 26

Today

• Simple virtual memory system example

• Linux and the virtual memory system

• Dynamic memory allocation

– Explicit memory management

• Implicit free lists

42 43

44 45
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Method 1: Implicit List
• For each block we need both size and allocation status

– Could store this information in two words: wasteful!

• Standard trick

– If blocks are aligned, some low-order address bits are always 0

– Instead of storing an always-0 bit, use it as a allocated/free flag

– When reading size word, must mask out this bit

Size

1 word

Format of
allocated and

free blocks
Payload

a = 1: Allocated block  
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Detailed Implicit Free List Example

Start 
of 

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded

Headers: labeled with size in bytes/allocated bit

Implicit List: Finding a Free Block
• First fit:

– Search list from beginning, choose first free block that fits:

– Can take linear time in total number of blocks (allocated and free)

– In practice it can cause “splinters” at beginning of list

• Next fit:

– Like first fit, but search list starting where previous search finished

– Should often be faster than first fit: avoids re-scanning unhelpful blocks

– Some research suggests that fragmentation is worse

• Best fit:

– Search the list, choose the best free block: fits, with fewest bytes left over

– Keeps fragments small—usually improves memory utilization

– Will typically run slower than first fit

p = start; 

while ((p < end) &&     \\ not passed end

((*p & 1) ||     \\ already allocated

(*p <= len)))  \\ too small 

p = p + (*p & -2);    \\ goto next block (word addressed)

Implicit List: Allocating in Free Block
• Allocating in a free block: splitting

– Since allocated space might be smaller than free 

space, we might want to split the block

void addblock(ptr p, int len) {

int newsize = ((len + 1) >> 1) << 1;  // round up to even

int oldsize = *p & -2;                // mask out low bit

*p = newsize | 1;                     // set new length

if (newsize < oldsize)

*(p+newsize) = oldsize - newsize;   // set length in remaining

}                                       //   part of block

4 4 26

4 24

p

24

addblock(p, 4)

46 47

48 49
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Implicit List: Freeing a Block
• Simplest implementation:

– Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

– But can lead to “false fragmentation” 

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Implicit List: Coalescing
• Join (coalesce) with next/previous blocks, if they are free

– Coalescing with next block

– But how do we coalesce with previous block?

void free_block(ptr p) {

*p = *p & -2;          // clear allocated flag

next = p + *p;         // find next block

if ((*next & 1) == 0)

*p = *p + *next;    // add to this block if

}                         //    not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

Implicit List: Bidirectional Coalescing 
• Boundary tags [Knuth73]

– Replicate size/allocated word at “bottom” (end) of free blocks

– Allows us to traverse the “list” backwards, but requires extra space

– Important and general technique!

Size

Format of
allocated and

free blocks

Payload and
padding

a = 1: Allocated block  
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

50 51

52 53
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m1 1

Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

Constant Time Coalescing (Case 2)

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 1

m1 1

n+m2 0

n+m2 0

m1 0

Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

m1 0

Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

54 55

56 57
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Summary of Key Allocator Policies
• Placement policy:

– First-fit, next-fit, best-fit, etc.

– Trades off lower throughput for less fragmentation

– Interesting observation: segregated free lists (next lecture) 
approximate a best fit placement policy without having to search 
entire free list

• Splitting policy:

– When do we go ahead and split free blocks?

– How much internal fragmentation are we willing to tolerate?

• Coalescing policy:

– Immediate coalescing: coalesce each time free is called 

– Deferred coalescing: try to improve performance of free by 
deferring coalescing until needed. Examples:

• Coalesce as you scan the free list for malloc

• Coalesce when the amount of external fragmentation reaches some 
threshold

Implicit Lists: Summary
• Implementation: very simple

• Allocate cost: 

– linear time worst case

• Free cost: 

– constant time worst case

▪ even with coalescing

• Memory usage: 

– will depend on placement policy

– First-fit, next-fit or best-fit

• Not used in practice for malloc/free because of linear-time 
allocation

▪ used in many special purpose applications

• However, the concepts of splitting and boundary tag coalescing are 
general to all allocators

Today

• Simple virtual memory system example

• Linux and the virtual memory system

• Dynamic memory allocation

– Explicit memory management

• Implicit free lists

• Explicit free lists

Keeping Track of Free Blocks

• Method 1: Implicit free list using length—links all blocks

• Method 2: Explicit free list among the free blocks using pointers

• Method 3: Segregated free list

– Different free lists for different size classes

• Method 4: Blocks sorted by size

– Can use a balanced tree (e.g. Red-Black tree) with pointers within 
each free block, and the length used as a key

5 4 26

5 4 26

59 60
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Explicit Free Lists

• Maintain list(s) of free blocks, not all blocks

– The “next” free block could be anywhere

• So we need to store forward/back pointers, not just sizes

– Still need boundary tags for coalescing

– Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Explicit Free Lists

• Logically:

• Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Freeing With Explicit Free Lists
• Insertion policy: Where in the free list do you put a newly freed 

block?

• LIFO (last-in-first-out) policy

– Insert freed block at the beginning of the free list

– Pro: simple and constant time

– Con: studies suggest fragmentation is worse than address 

ordered

• Address-ordered policy

– Insert freed blocks so that free list blocks are always in address 

order: 

addr(prev) < addr(curr) < addr(next)

– Con: requires search

– Pro: studies suggest fragmentation is lower than LIFO

63 64

65 66
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Freeing With a LIFO Policy (Case 1)

• Insert the freed block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic

Freeing With a LIFO Policy (Case 2)

• Splice out successor block, coalesce both memory blocks 
and insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphic

Freeing With a LIFO Policy (Case 3)

• Splice out predecessor block, coalesce both memory 
blocks, and insert the new block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic
Freeing With a LIFO Policy (Case 4)

• Splice out predecessor and successor blocks, 
coalesce all 3 memory blocks and insert the new 
block at the root of the list

free( )

Root

Before

Root

After

conceptual graphic

67 68
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Explicit List Summary
• Comparison to implicit list:

– Allocate is linear time in number of free blocks instead of all

blocks

• Much faster when most of the memory is full 

– Slightly more complicated allocate and free since needs to splice 

blocks in and out of the list

– Some extra space for the links (2 extra  words needed for each 

block)

• Does this increase internal fragmentation?

• Most common use of linked lists is in conjunction with segregated 
free lists

– Keep multiple linked lists of different size classes, or possibly for 

different types of objects

Today

• Simple virtual memory system example

• Linux and the virtual memory system

• Dynamic memory allocation

– Explicit memory management

• Implicit free lists

• Explicit free lists

• Segregated free lists

Keeping Track of Free Blocks

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list

– Different free lists for different size classes

• Method 4: Blocks sorted by size

– Can use a balanced tree (e.g. Red-Black tree) with pointers 
within each free block, and the length used as a key

5 4 26

5 4 26

Segregated List (Seglist) Allocators

• Each size class of blocks has its own free list

• Often have separate classes for each small size

• For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

71 72

73 74
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Seglist Allocator
• Given an array of free lists, each one for some size class

• To allocate a block of size n:

– Search appropriate free list for block of size m > n

– If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)

– If no block is found, try next larger class

– Repeat until block is found

• If no block is found:

– Request additional heap memory from OS (using sbrk())

– Allocate block of n bytes from this new memory

– Place remainder as a single free block in largest size class.

Seglist Allocator (cont.)

• To free a block:

– Coalesce and place on appropriate list

• Advantages of seglist allocators

– Higher throughput

• log time for power-of-two size classes

– Better memory utilization

• First-fit search of segregated free list approximates a best-fit 

search of entire heap

• Extreme case: Giving each block its own size class is 

equivalent to best-fit

More Info on Allocators

• D. Knuth, “The Art of Computer Programming”, 2nd edition, 
Addison Wesley, 1973

– The classic reference on dynamic storage allocation

• Wilson et al, “Dynamic Storage Allocation: A Survey and 
Critical Review”, Proc. 1995 Int’l Workshop on Memory 
Management, Kinross, Scotland, Sept, 1995.

– Comprehensive survey

– Available from CS:APP student site (csapp.cs.cmu.edu)
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