Program
Optimization

Readings: Chapter 5
Coming Up: Assignment 5

17

Generally Useful Optimizations
(Machine-Independent)

» Optimizations that you or the compiler should do regardless of
processor / compiler

» Code Motion
— Reduce frequency with which computation performed
« If it will always produce same result
« Especially moving code out of loop

void set_row(double *a, double *b,
long i, long n)
{

long j; _— long j;
for (j = 0; j < n; j++) int ni = n*i;
a[n*i+j] = b[j]; for (j = 0; j < n; j++)
} a[ni+j] = b[jl;

20

Page 1

Performance Realities

» There’s more to performance than asymptotic complexity

« Constant factors matter too!
— Easily see 10:1 performance range depending on how code is written
— Must optimize at multiple levels:
« algorithm, data representations, procedures, and loops
* Must understand system to optimize performance
— How programs are compiled and executed
— How modern processors + memory systems operate
— How to measure program performance and identify bottlenecks

— How to improve performance without destroying code modularity and
generality

19

Compiler-Generated Code Motion (-O1)

void set row(double *a, double *b, =
long i, long n) long j;
{ long ni = n*i;
long j; double *rowp = a+ni;
for (j = 0; j < n; j++) for (j = 0; j < n; j++)
aln*i+j] = b[j]; *rowp++ = b[j];
} ////f
set_row:
testqg $rcx, $rcx # Test n
jle .L1 # If 0, goto done
imulg $rcx, $rdx # ni = n*i
leaq (%rdi, %rdx,8), %rdx # rowp = A + ni*8
movl $0, %eax #3=0
LL3: # loop:
movsd (%rsi,%rax,8), %xmmO # t = b[]j]
movsd %$xmm0, (%rdx,%rax,8) # M[A+ni*8 + j*8] = t
addq $1, Srax # j++
cmpq %rcx, %rax # j:n
jne .L3 # if !'=, goto loop
JL1: # done:
rep ; ret

21

Share Common Subexpressions
(Machine-Independent)

— Reuse portions of expressions
— GCC will do this with —O1

/* Sum neighbors of i,j */

up = val[(i-1)*n + j]; up = val[inj - n];
down = val[(i+l)*n + j 1; down = wvall[inj + n];
left = wval[i*n + j-11; left = wval[inj - 1];
right = val[i*n + j+1]; right = val[inj + 1];

sum = up + down + left + right;

long inj = i*n + j;

sum = up + down + left + right;

3 multiplications: i*n, (i-1)*n, (i+1)*n

1 multiplication: i*n

leaq 1(%rsi), %$rax # i+l imulg %rcx, %$rsi # i*n

leaq -1(%rsi), %r8 # i-1 addq %rdx, %rsi # i*n+j

imulqg %rcx, %rsi # i*n movq %rsi, %rax # i*n+j

imulg $rcx, %$rax # (i+1l)*n subq %rcx, %rax # i*n+j-n
imulg %rcx, %r8 # (i-1)*n leaq (%rsi,%rcx), %$rcx # i*n+j+n
addq %rdx, %$rsi # i*n+j

addg %rdx, %rax # (i+1)*n+j

addq %rdx, $r8 # (i-1)*n+j

22

Make Use of Registers

— Reading and writing registers much faster
than reading/writing memory

Limitation

— Compiler not always able to determine
whether variable can be held in register

— Possibility of Aliasing

— See example later

24

Page 2

Reduction in Strength

— Replace costly operation with simpler one
— Shift, add instead of multiply or divide
16*x x << 4
« Utility machine dependent
» Depends on cost of multiply or divide instruction
— On Intel Nehalem, integer multiply requires 3 CPU cycles

— Recognize sequence of products

-=>

int ni = 0;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
a[ni + j] = b[j];
ni += n;

for (i = 0; 1 < n; i++) {
int ni = n*i;
for (j = 0; j < n; j++)
a[ni + j] = b[jl;
} }

23

Optimizing Compilers
» Provide efficient mapping of program to machine
— register allocation
— code selection and ordering (scheduling)
— dead code elimination
— eliminating minor inefficiencies
* Don’t (usually) improve asymptotic efficiency
— up to programmer to select best overall algorithm
— big-O savings are (often) more important than constant
factors
* but constant factors also matter
» Have difficulty overcoming “optimization blockers”
— potential memory aliasing
— potential procedure side-effects

25

Limitations of Optimizing Compilers

* Operate under fundamental constraint
— Must not cause any change in program behavior
« Except, possibly when program making use of nonstandard
language features
— Often prevents it from making optimizations that would only affect
behavior under pathological conditions.
» Behavior that may be obvious to the programmer can be obfuscated
by languages and coding styles
— e.g., Data ranges may be more limited than variable types suggest
* Most analysis is performed only within procedures
— Whole-program analysis is too expensive in most cases
— Newer versions of GCC do interprocedural analysis within individual files
< But, not between code in different files
* Most analysis is based only on static information
— Compiler has difficulty anticipating run-time inputs
* When in doubt, the compiler must be conservative

26

Lower Case Conversion Performance
— Time quadruples when double string length

— Quadratic performance
* N calls to strlen, each O(N) = O(N2) performance

250

200 ‘/’/’/,/ﬂ//
150

100 4*/'/’/'/~

) M

0 u T T T T T T T T
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length

CPU seconds

28

Page 3

Optimization Blocker #1: Procedure
Calls

» Procedure to Convert String to Lower Case

void lower (char *s)
{
size_t i;
for (i = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z'")
s[i] -= ('A' - 'a');

27

Improving Performance

void lower (char *s)
{
size_t i;
size t len = strlen(s);
for (i = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z")
s[i] -= ('A' - 'a');

— Move call to strlen outside of loop

— Since result does not change from one
iteration to another

— Form of code motion

29

Lower Case Conversion Performance

— Time doubles when double string length
— Linear performance of lower2

250

200 //
150
100 /
50
"_’r,/ lower2
0

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length

CPU seconds

Optimization Blocker: Procedure Calls

« Why couldn’t compiler move strlen out of inner loop?
— Procedure may have side effects
« Alters global state each time called
— Function may not return same value for given arguments
« Depends on other parts of global state
« Procedure lower could interact with strlen
* Warning:
— Compiler treats procedure call as a black box
— Weak optimizations near them

size t lencnt = 0;
* Remedies: size t strlen(const char *s)
— Use of inline functions « -
* GCC does this with —O1
— Within single file
— Do your own code motion }
lencnt += length;
return length;

size t length = 0;
while (*s !'= '\0') {
s++; length++;

30

Memory Matters

/* Sum rows is of n X n matrix a
and store in vector b */
void sum_rowsl (double *a, double *b, long n) {

long i, j;
for (i = 0; i < n; i++) {
b[i] = 0;

for (j = 0; j < n; j++)
b[i] += a[i*n + j];

sum_rowsl inner loop

.L4:
movsd (%rsi,%rax,8), %xmm0 # FP load
addsd (%$rdi) , %$xmm0 # FP add
movsd %$xmm0, (%rsi,%rax,8) # FP store

addgq $8, %rdi
cmpq %rcx, %rdi
Jjne .L4

— Code updates b[i] on every iteration
— Why couldn’t compiler optimize this away?

32

}
31
Memory Aliasing
/* Sum rows is of n X n matrix a
and store in vector b */
void sum_rowsl (double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {
b[i] = 0;
for (J = 0; j < n; j++)
b[i] += a[i*n + j];
}
}
Value of B:
double A[9] = _;i.nit: [4, 8, 16]
{o, i, 2,
NS
double B3] = A+3;
— Code updates b [1] on every iteration
— Must consider possibility that these updates will affect
program behavior
33

Removing Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */
void sum rows2 (double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {
double val = 0;
for (3 = 0; j < n; j+4)
val += a[i*n + jl;
b[i] = val;

}

sum_rows2 inner loop
.L10:
addsd (%rdi) , %$xmmO # FP load + add
addgq $8, %rdi
cmpq %rax, %rdi
jne .L10

— No need to store intermediate results

Optimization Blocker: Memory Aliasing

* Aliasing
—Two different memory references specify single
location
—Easy to have happen in C
« Since allowed to do address arithmetic
- Direct access to storage structures
—Get in habit of introducing local variables
» Accumulating within loops
* Your way of telling compiler not to check for aliasing

34

35

Advanced Compiler Optimizations:

Loop Unrolling

irmovl $5, Y%edx
irmovl $80, %ebx

Loop:
mrmovl array_base(%ebx), %eax
addl %edx, Y%eax
rmmovl %eax, array_base(%ebx)
rrmovl %ebx, %esi
addl $-4, %esi
mrmovl array_base(%esi), %eax
addl %edx, Y%eax
rmmovl %eax, array_base(%esi)
addl $-8, %ebx
jne Loop

Comparing the two code sequences

irmovl $5, %edx
irmovl $80, %ebx

irmovl $5, %edx
irmovl $80, %ebx

Loop: Loop:
mrmovl array_base(%ebx), %eax mrmovl array_base(%ebx), %eax
addl %edx, %eax addl %edx, Y%eax
rmmovl %eax, array_base(%ebx) rmmovl %eax, array_base(%ebx)
rrmovl %ebx, %esi addl $-4, %ebx
addl $-4, %esi jne Loop

mrmovl array_base(%esi), %eax
addl %edx, Y%eax

rmmovl %eax, array_base(%esi)
addl $-8, %ebx

jne Loop

37

36

37

Modern CPU Design

Instruction Control

Fetch
Retirement Control
...... Unit
Register Instruction
File Decode

t o

Address

Instruction
Cache

Instructions

Register Updates Prediction OK?

g~

Operation Results

Addr. Addr,

Data Data

Data
Cache

Execution

38

Superscalar Processor

 Definition: A superscalar processor can issue and
execute multiple instructions in one cycle. The
instructions are retrieved from a sequential instruction
stream and are usually scheduled dynamically

« Benefit: without programming effort, superscalar
processor can take advantage of the instruction-level
parallelism that most programs have

* Most modern CPUs are superscalar
* Intel: since Pentium (1993)

40

Page 6

Instruction-level Parallelism

* Pipelining/super-pipelining

+ Out-of-order execution

» Super-scalar
— multiple instructions per pipeline stage
— Dependences handled in hardware

* Very Large Instruction Word (VLIW)
— Multiple instructions per pipeline stage
— Dependences taken care of by compiler

10/26/2020 39

39

Types of Data Hazards

* RAW - true dependence
*+ WAR - anti-dependence
* WAW - output dependence

10/26/2020 41

41

Enabling Out-Of-Order Execution

« Tomasulo’s generalized data forwarding
algorithm in the IBM360

— Register renaming
— Reservation stations

— Common data bus to broadcast data to
reservation stations

10/26/2020 42

42

Register Prediction

Operations
Updates ! OK? P

Execution
Unit

Operation Results

Execution

— Multiple functional units
» Each can operate independently

— Operations performed as soon as operands available
* Not necessarily in program order
+ Within limits of functional units

— Control logic

« Ensures behavior equivalent to sequential program execution
10/26/2020 44

44

Instruction Control

Instruction Control
Address

Register
File

v

* Grabs Instruction Bytes From Memory
— Based on Current PC + Predicted Targets for Predicted Branches

— Hardware dynamically guesses whether branches taken/not taken and
(possibly) branch target

+ Translates Instructions Into Operations
— Primitive steps required to perform instruction
— Typical instruction requires 1-3 operations

» Converts Register References Into Tags

— Abstract identifier linking destination of one operation with sources of

later operations
10/26/2020 43

Operations

43

Advanced Processor Design
Techniques

» Trace caches
» Register renaming — eliminate WAW, WAR hazards
— Register map table
— Free list
— Active list
» Speculative execution
* Value prediction
» Branch prediction
— Branch history tables for prediction
— Branch stack to save state prior to branch

— Branch mask to determine instructions that must be
squashed

10/26/2020 45

45

Exploiting Instruction-Level
Parallelism

Need general understanding of modern processor
design

— Hardware can execute multiple instructions in parallel
Performance limited by data dependencies

Simple transformations can yield dramatic performance
improvement

— Compilers often cannot make these transformations

— Lack of associativity and distributivity in floating-point
arithmetic

46

Page 8

