
Page 1

Program

Optimization
Readings: Chapter 5

Coming Up: Assignment 5

Performance Realities

• There’s more to performance than asymptotic complexity

• Constant factors matter too!

– Easily see 10:1 performance range depending on how code is written

– Must optimize at multiple levels:

• algorithm, data representations, procedures, and loops

• Must understand system to optimize performance

– How programs are compiled and executed

– How modern processors + memory systems operate

– How to measure program performance and identify bottlenecks

– How to improve performance without destroying code modularity and

generality

Generally Useful Optimizations

(Machine-Independent)
• Optimizations that you or the compiler should do regardless of

processor / compiler

• Code Motion

– Reduce frequency with which computation performed

• If it will always produce same result

• Especially moving code out of loop

long j;

int ni = n*i;

for (j = 0; j < n; j++)

a[ni+j] = b[j];

void set_row(double *a, double *b,

long i, long n)

{

long j;

for (j = 0; j < n; j++)

a[n*i+j] = b[j];

}

Compiler-Generated Code Motion (-O1)

set_row:

testq %rcx, %rcx # Test n

jle .L1 # If 0, goto done

imulq %rcx, %rdx # ni = n*i

leaq (%rdi,%rdx,8), %rdx # rowp = A + ni*8

movl $0, %eax # j = 0

.L3: # loop:

movsd (%rsi,%rax,8), %xmm0 # t = b[j]

movsd %xmm0, (%rdx,%rax,8) # M[A+ni*8 + j*8] = t

addq $1, %rax # j++

cmpq %rcx, %rax # j:n

jne .L3 # if !=, goto loop

.L1: # done:

rep ; ret

long j;

long ni = n*i;

double *rowp = a+ni;

for (j = 0; j < n; j++)

*rowp++ = b[j];

void set_row(double *a, double *b,

long i, long n)

{

long j;

for (j = 0; j < n; j++)

a[n*i+j] = b[j];

}

17 19

20 21

Page 2

Share Common Subexpressions

(Machine-Independent)
– Reuse portions of expressions

– GCC will do this with –O1

/* Sum neighbors of i,j */

up = val[(i-1)*n + j];

down = val[(i+1)*n + j];

left = val[i*n + j-1];

right = val[i*n + j+1];

sum = up + down + left + right;

long inj = i*n + j;

up = val[inj - n];

down = val[inj + n];

left = val[inj - 1];

right = val[inj + 1];

sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+1

leaq -1(%rsi), %r8 # i-1

imulq %rcx, %rsi # i*n

imulq %rcx, %rax # (i+1)*n

imulq %rcx, %r8 # (i-1)*n

addq %rdx, %rsi # i*n+j

addq %rdx, %rax # (i+1)*n+j

addq %rdx, %r8 # (i-1)*n+j

imulq %rcx, %rsi # i*n

addq %rdx, %rsi # i*n+j

movq %rsi, %rax # i*n+j

subq %rcx, %rax # i*n+j-n

leaq (%rsi,%rcx), %rcx # i*n+j+n

Reduction in Strength

– Replace costly operation with simpler one

– Shift, add instead of multiply or divide
16*x --> x << 4

• Utility machine dependent

• Depends on cost of multiply or divide instruction

– On Intel Nehalem, integer multiply requires 3 CPU cycles

– Recognize sequence of products

for (i = 0; i < n; i++) {

int ni = n*i;

for (j = 0; j < n; j++)

a[ni + j] = b[j];

}

int ni = 0;

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++)

a[ni + j] = b[j];

ni += n;

}

Make Use of Registers

– Reading and writing registers much faster

than reading/writing memory

• Limitation

– Compiler not always able to determine

whether variable can be held in register

– Possibility of Aliasing

– See example later

Optimizing Compilers
• Provide efficient mapping of program to machine

– register allocation

– code selection and ordering (scheduling)

– dead code elimination

– eliminating minor inefficiencies

• Don’t (usually) improve asymptotic efficiency

– up to programmer to select best overall algorithm

– big-O savings are (often) more important than constant

factors

• but constant factors also matter

• Have difficulty overcoming “optimization blockers”

– potential memory aliasing

– potential procedure side-effects

22 23

24 25

Page 3

Limitations of Optimizing Compilers
• Operate under fundamental constraint

– Must not cause any change in program behavior

• Except, possibly when program making use of nonstandard

language features

– Often prevents it from making optimizations that would only affect

behavior under pathological conditions.

• Behavior that may be obvious to the programmer can be obfuscated

by languages and coding styles

– e.g., Data ranges may be more limited than variable types suggest

• Most analysis is performed only within procedures

– Whole-program analysis is too expensive in most cases

– Newer versions of GCC do interprocedural analysis within individual files

• But, not between code in different files

• Most analysis is based only on static information

– Compiler has difficulty anticipating run-time inputs

• When in doubt, the compiler must be conservative

• Procedure to Convert String to Lower Case

void lower(char *s)

{

size_t i;

for (i = 0; i < strlen(s); i++)

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');

}

Optimization Blocker #1: Procedure

Calls

Lower Case Conversion Performance
– Time quadruples when double string length

– Quadratic performance

• N calls to strlen, each O(N) ➔ O(N2) performance

0

50

100

150

200

250

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

C
P

U
 s

e
c

o
n

d
s

String length

lower1

Improving Performance

– Move call to strlen outside of loop

– Since result does not change from one

iteration to another

– Form of code motion

void lower(char *s)

{

size_t i;

size_t len = strlen(s);

for (i = 0; i < len; i++)

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');

}

26 27

28 29

Page 4

Lower Case Conversion Performance

– Time doubles when double string length

– Linear performance of lower2

0

50

100

150

200

250

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

C
P

U
 s

e
c

o
n

d
s

String length

lower1

lower2

Optimization Blocker: Procedure Calls
• Why couldn’t compiler move strlen out of inner loop?

– Procedure may have side effects

• Alters global state each time called

– Function may not return same value for given arguments

• Depends on other parts of global state

• Procedure lower could interact with strlen

• Warning:

– Compiler treats procedure call as a black box

– Weak optimizations near them

• Remedies:

– Use of inline functions

• GCC does this with –O1

– Within single file

– Do your own code motion

size_t lencnt = 0;

size_t strlen(const char *s)

{

size_t length = 0;

while (*s != '\0') {

s++; length++;

}

lencnt += length;

return length;

}

Memory Matters

– Code updates b[i] on every iteration

– Why couldn’t compiler optimize this away?

sum_rows1 inner loop

.L4:

movsd (%rsi,%rax,8), %xmm0 # FP load

addsd (%rdi), %xmm0 # FP add

movsd %xmm0, (%rsi,%rax,8) # FP store

addq $8, %rdi

cmpq %rcx, %rdi

jne .L4

/* Sum rows is of n X n matrix a

and store in vector b */

void sum_rows1(double *a, double *b, long n) {

long i, j;

for (i = 0; i < n; i++) {

b[i] = 0;

for (j = 0; j < n; j++)

b[i] += a[i*n + j];

}

}

Memory Aliasing

– Code updates b[i] on every iteration

– Must consider possibility that these updates will affect

program behavior

/* Sum rows is of n X n matrix a

and store in vector b */

void sum_rows1(double *a, double *b, long n) {

long i, j;

for (i = 0; i < n; i++) {

b[i] = 0;

for (j = 0; j < n; j++)

b[i] += a[i*n + j];

}

}

double A[9] =

{ 0, 1, 2,

4, 8, 16},

32, 64, 128};

double B[3] = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:

30 31

32 33

Page 5

Removing Aliasing

– No need to store intermediate results

sum_rows2 inner loop

.L10:

addsd (%rdi), %xmm0 # FP load + add

addq $8, %rdi

cmpq %rax, %rdi

jne .L10

/* Sum rows is of n X n matrix a

and store in vector b */

void sum_rows2(double *a, double *b, long n) {

long i, j;

for (i = 0; i < n; i++) {

double val = 0;

for (j = 0; j < n; j++)

val += a[i*n + j];

b[i] = val;

}

}

Optimization Blocker: Memory Aliasing

• Aliasing

–Two different memory references specify single

location

–Easy to have happen in C

• Since allowed to do address arithmetic

• Direct access to storage structures

–Get in habit of introducing local variables

• Accumulating within loops

• Your way of telling compiler not to check for aliasing

Advanced Compiler Optimizations:

Loop Unrolling
irmovl $5, %edx

irmovl $80, %ebx

Loop:

mrmovl array_base(%ebx), %eax

addl %edx, %eax

rmmovl %eax, array_base(%ebx)

rrmovl %ebx, %esi

addl $-4, %esi

mrmovl array_base(%esi), %eax

addl %edx, %eax

rmmovl %eax, array_base(%esi)

addl $-8, %ebx

jne Loop

...

Comparing the two code sequences

irmovl $5, %edx

irmovl $80, %ebx

Loop:

mrmovl array_base(%ebx), %eax

addl %edx, %eax

rmmovl %eax, array_base(%ebx)

addl $-4, %ebx

jne Loop

…

37

irmovl $5, %edx

irmovl $80, %ebx

Loop:

mrmovl array_base(%ebx), %eax

addl %edx, %eax

rmmovl %eax, array_base(%ebx)

rrmovl %ebx, %esi

addl $-4, %esi

mrmovl array_base(%esi), %eax

addl %edx, %eax

rmmovl %eax, array_base(%esi)

addl $-8, %ebx

jne Loop

...

34 35

36 37

Page 6

Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates

10/26/2020 39

Instruction-level Parallelism

• Pipelining/super-pipelining

• Out-of-order execution

• Super-scalar

– multiple instructions per pipeline stage

– Dependences handled in hardware

• Very Large Instruction Word (VLIW)

– Multiple instructions per pipeline stage

– Dependences taken care of by compiler

Superscalar Processor

• Definition: A superscalar processor can issue and

execute multiple instructions in one cycle. The

instructions are retrieved from a sequential instruction

stream and are usually scheduled dynamically

• Benefit: without programming effort, superscalar

processor can take advantage of the instruction-level

parallelism that most programs have

• Most modern CPUs are superscalar

• Intel: since Pentium (1993)

10/26/2020 41

Types of Data Hazards

• RAW – true dependence

• WAR – anti-dependence

• WAW – output dependence

38 39

40 41

Page 7

10/26/2020 42

Enabling Out-Of-Order Execution

• Tomasulo’s generalized data forwarding

algorithm in the IBM360

– Register renaming

– Reservation stations

– Common data bus to broadcast data to

reservation stations

10/26/2020 43

Instruction Control

• Grabs Instruction Bytes From Memory

– Based on Current PC + Predicted Targets for Predicted Branches

– Hardware dynamically guesses whether branches taken/not taken and

(possibly) branch target

• Translates Instructions Into Operations

– Primitive steps required to perform instruction

– Typical instruction requires 1–3 operations

• Converts Register References Into Tags

– Abstract identifier linking destination of one operation with sources of

later operations

Instruction ControlInstruction Control

Instruction

Cache

Fetch

Control

Instruction

Decode

Address

Instructions

Operations

Retirement

Unit

Register

File

Instruction ControlInstruction Control

Instruction

Cache

Fetch

Control

Instruction

Decode

Address

Instructions

Operations

Retirement

Unit

Register

File

10/26/2020 44

Execution

Unit

– Multiple functional units

• Each can operate independently

– Operations performed as soon as operands available

• Not necessarily in program order

• Within limits of functional units

– Control logic

• Ensures behavior equivalent to sequential program execution

ExecutionExecution

Functional

Units

Integer/

Branch

FP

Add

FP

Mult/Div
Load Store

Data

Cache

Prediction

OK?

DataData

Addr. Addr.

General

Integer

Operation Results

Register

Updates
Operations

10/26/2020 45

Advanced Processor Design

Techniques

• Trace caches

• Register renaming – eliminate WAW, WAR hazards

– Register map table

– Free list

– Active list

• Speculative execution

• Value prediction

• Branch prediction

– Branch history tables for prediction

– Branch stack to save state prior to branch

– Branch mask to determine instructions that must be
squashed

42 43

44 45

Page 8

Exploiting Instruction-Level

Parallelism

• Need general understanding of modern processor

design

– Hardware can execute multiple instructions in parallel

• Performance limited by data dependencies

• Simple transformations can yield dramatic performance

improvement

– Compilers often cannot make these transformations

– Lack of associativity and distributivity in floating-point

arithmetic

46

