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Program 

Optimization
Readings: Chapter 5

Coming Up: Assignment 5

Performance Realities

• There’s more to performance than asymptotic complexity

• Constant factors matter too!

– Easily see 10:1 performance range depending on how code is written

– Must optimize at multiple levels: 

• algorithm, data representations, procedures, and loops

• Must understand system to optimize performance

– How programs are compiled and executed

– How modern processors + memory systems operate

– How to measure program performance and identify bottlenecks

– How to improve performance without destroying code modularity and 

generality

Generally Useful Optimizations 

(Machine-Independent)
• Optimizations that you or the compiler should do regardless of 

processor / compiler

• Code Motion

– Reduce frequency with which computation performed

• If it will always produce same result

• Especially moving code out of loop

long j;

int ni = n*i;

for (j = 0; j < n; j++)

a[ni+j] = b[j];

void set_row(double *a, double *b,

long i, long n)

{

long j;

for (j = 0; j < n; j++)

a[n*i+j] = b[j];

}

Compiler-Generated Code Motion (-O1)

set_row:

testq %rcx, %rcx # Test n

jle .L1 # If 0, goto done

imulq %rcx, %rdx # ni = n*i

leaq (%rdi,%rdx,8), %rdx # rowp = A + ni*8

movl $0, %eax # j = 0

.L3: # loop:

movsd (%rsi,%rax,8), %xmm0    # t = b[j]

movsd %xmm0, (%rdx,%rax,8)   # M[A+ni*8 + j*8] = t

addq $1, %rax # j++

cmpq %rcx, %rax # j:n

jne .L3 # if !=, goto loop

.L1: # done:

rep ; ret

long j;

long ni = n*i;

double *rowp = a+ni;

for (j = 0; j < n; j++)

*rowp++ = b[j];

void set_row(double *a, double *b,

long i, long n)

{

long j;

for (j = 0; j < n; j++)

a[n*i+j] = b[j];

}
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Share Common Subexpressions 

(Machine-Independent)
– Reuse portions of expressions

– GCC will do this with –O1

/* Sum neighbors of i,j */

up =    val[(i-1)*n + j  ];

down =  val[(i+1)*n + j  ];

left =  val[i*n     + j-1];

right = val[i*n     + j+1];

sum = up + down + left + right;

long inj = i*n + j;

up =    val[inj - n];

down =  val[inj + n];

left =  val[inj - 1];

right = val[inj + 1];

sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq   1(%rsi), %rax  # i+1

leaq   -1(%rsi), %r8  # i-1

imulq  %rcx, %rsi     # i*n

imulq  %rcx, %rax     # (i+1)*n

imulq  %rcx, %r8      # (i-1)*n

addq   %rdx, %rsi     # i*n+j

addq   %rdx, %rax     # (i+1)*n+j

addq   %rdx, %r8      # (i-1)*n+j

imulq %rcx, %rsi  # i*n

addq %rdx, %rsi  # i*n+j

movq %rsi, %rax  # i*n+j

subq %rcx, %rax  # i*n+j-n

leaq (%rsi,%rcx), %rcx # i*n+j+n

Reduction in Strength

– Replace costly operation with simpler one

– Shift, add instead of multiply or divide
16*x --> x << 4

• Utility machine dependent

• Depends on cost of multiply or divide instruction

– On Intel Nehalem, integer multiply requires 3 CPU cycles

– Recognize sequence of products

for (i = 0; i < n; i++) {

int ni = n*i;

for (j = 0; j < n; j++)

a[ni + j] = b[j];

}

int ni = 0;

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++)

a[ni + j] = b[j];

ni += n;

}

Make Use of Registers

– Reading and writing registers much faster 

than reading/writing memory

• Limitation

– Compiler not always able to determine 

whether variable can be held in register

– Possibility of Aliasing

– See example later

Optimizing Compilers
• Provide efficient mapping of program to machine

– register allocation

– code selection and ordering (scheduling)

– dead code elimination

– eliminating minor inefficiencies

• Don’t (usually) improve asymptotic efficiency

– up to programmer to select best overall algorithm

– big-O savings are (often) more important than constant 

factors

• but constant factors also matter

• Have difficulty overcoming “optimization blockers”

– potential memory aliasing

– potential procedure side-effects
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Limitations of Optimizing Compilers
• Operate under fundamental constraint

– Must not cause any change in program behavior

• Except, possibly when program making use of nonstandard 

language features

– Often prevents it from making optimizations that would only affect 

behavior under pathological conditions.

• Behavior that may be obvious to the programmer can  be obfuscated 

by languages and coding styles

– e.g., Data ranges may be more limited than variable types suggest

• Most analysis is performed only within procedures

– Whole-program analysis is too expensive in most cases

– Newer versions of GCC do interprocedural analysis within individual files

• But, not between code in different files

• Most analysis is based only on static information

– Compiler has difficulty anticipating run-time inputs

• When in doubt, the compiler must be conservative

• Procedure to Convert String to Lower Case

void lower(char *s)

{

size_t i;

for (i = 0; i < strlen(s); i++)

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');

}

Optimization Blocker #1: Procedure 

Calls

Lower Case Conversion Performance
– Time quadruples when double string length

– Quadratic performance

• N calls to strlen, each O(N) ➔ O(N2) performance
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Improving Performance

– Move call to strlen outside of loop

– Since result does not change from one 

iteration to another

– Form of code motion

void lower(char *s)

{

size_t i;

size_t len = strlen(s);

for (i = 0; i < len; i++)

if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');

}
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Lower Case Conversion Performance

– Time doubles when double string length

– Linear performance of lower2
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Optimization Blocker: Procedure Calls
• Why couldn’t compiler move strlen out of  inner loop?

– Procedure may have side effects

• Alters global state each time called

– Function may not return same value for given arguments

• Depends on other parts of global state

• Procedure lower could interact with strlen

• Warning:

– Compiler treats procedure call as a black box

– Weak optimizations near them

• Remedies:

– Use of inline functions

• GCC does this with –O1

– Within single file

– Do your own code motion

size_t lencnt = 0;

size_t strlen(const char *s)

{

size_t length = 0;

while (*s != '\0') {

s++; length++;

}

lencnt += length;

return length;

}

Memory Matters

– Code updates b[i] on every iteration

– Why couldn’t compiler optimize this away?

# sum_rows1 inner loop

.L4:

movsd (%rsi,%rax,8), %xmm0 # FP load

addsd (%rdi), %xmm0 # FP add

movsd %xmm0, (%rsi,%rax,8) # FP store

addq $8, %rdi

cmpq %rcx, %rdi

jne .L4

/* Sum rows is of n X n matrix a

and store in vector b  */

void sum_rows1(double *a, double *b, long n) {

long i, j;

for (i = 0; i < n; i++) {

b[i] = 0;

for (j = 0; j < n; j++)

b[i] += a[i*n + j];

}

}

Memory Aliasing

– Code updates b[i] on every iteration

– Must consider possibility that these updates will affect 

program behavior

/* Sum rows is of n X n matrix a

and store in vector b  */

void sum_rows1(double *a, double *b, long n) {

long i, j;

for (i = 0; i < n; i++) {

b[i] = 0;

for (j = 0; j < n; j++)

b[i] += a[i*n + j];

}

}

double A[9] = 

{ 0,   1,   2,

4,   8,  16},

32,  64, 128};

double B[3] = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init:  [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:
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Removing Aliasing

– No need to store intermediate results

# sum_rows2 inner loop

.L10:

addsd (%rdi), %xmm0 # FP load + add

addq $8, %rdi

cmpq %rax, %rdi

jne .L10

/* Sum rows is of n X n matrix a

and store in vector b  */

void sum_rows2(double *a, double *b, long n) {

long i, j;

for (i = 0; i < n; i++) {

double val = 0;

for (j = 0; j < n; j++)

val += a[i*n + j];

b[i] = val;

}

}

Optimization Blocker: Memory Aliasing

• Aliasing

–Two different memory references specify single 

location

–Easy to have happen in C

• Since allowed to do address arithmetic

• Direct access to storage structures

–Get in habit of introducing local variables

• Accumulating within loops

• Your way of telling compiler not to check for aliasing

Advanced Compiler Optimizations: 

Loop Unrolling
irmovl $5, %edx

irmovl $80, %ebx

Loop:

mrmovl array_base(%ebx), %eax

addl %edx, %eax

rmmovl %eax, array_base(%ebx)

rrmovl %ebx, %esi

addl $-4,  %esi

mrmovl array_base(%esi), %eax

addl %edx, %eax

rmmovl %eax, array_base(%esi)

addl $-8, %ebx

jne Loop

...

Comparing the two code sequences

irmovl $5, %edx

irmovl $80, %ebx

Loop:

mrmovl array_base(%ebx), %eax

addl %edx, %eax

rmmovl %eax, array_base(%ebx)

addl $-4, %ebx

jne Loop

…

37

irmovl $5, %edx

irmovl $80, %ebx

Loop:

mrmovl array_base(%ebx), %eax

addl %edx, %eax

rmmovl %eax, array_base(%ebx)

rrmovl %ebx, %esi

addl $-4,  %esi

mrmovl array_base(%esi), %eax

addl %edx, %eax

rmmovl %eax, array_base(%esi)

addl $-8, %ebx

jne Loop

...
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Modern CPU Design
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Instruction-level Parallelism

• Pipelining/super-pipelining

• Out-of-order execution

• Super-scalar 

– multiple instructions per pipeline stage

– Dependences handled in hardware

• Very Large Instruction Word (VLIW)

– Multiple instructions per pipeline stage

– Dependences taken care of by compiler

Superscalar Processor

• Definition: A superscalar processor can issue and 

execute multiple instructions in one cycle. The 

instructions are retrieved from a sequential instruction 

stream and are usually scheduled dynamically

• Benefit: without programming effort, superscalar 

processor can take advantage of the instruction-level 

parallelism that most programs have

• Most modern CPUs are superscalar

• Intel: since Pentium (1993)

10/26/2020 41

Types of Data Hazards

• RAW – true dependence

• WAR – anti-dependence

• WAW – output dependence
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Enabling Out-Of-Order Execution

• Tomasulo’s generalized data forwarding 

algorithm in the IBM360

– Register renaming

– Reservation stations 

– Common data bus to broadcast data to 

reservation stations

10/26/2020 43

Instruction Control

• Grabs Instruction Bytes From Memory

– Based on Current PC + Predicted Targets for Predicted Branches

– Hardware dynamically guesses whether branches taken/not taken and 

(possibly) branch target

• Translates Instructions Into Operations

– Primitive steps required to perform instruction

– Typical instruction requires 1–3 operations

• Converts Register References Into Tags

– Abstract identifier linking destination of one operation with sources of 

later operations
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Execution

Unit

– Multiple functional units

• Each can operate independently

– Operations performed as soon as operands available

• Not necessarily in program order

• Within limits of functional units

– Control logic

• Ensures behavior equivalent to sequential program execution
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Advanced Processor Design 

Techniques

• Trace caches

• Register renaming – eliminate WAW, WAR hazards

– Register map table

– Free list

– Active list

• Speculative execution

• Value prediction

• Branch prediction

– Branch history tables for prediction

– Branch stack to save state prior to branch

– Branch mask to determine instructions that must be 
squashed
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Exploiting Instruction-Level 

Parallelism

• Need general understanding of modern processor 

design

– Hardware can execute multiple instructions in parallel

• Performance limited by data dependencies

• Simple transformations can yield dramatic performance 

improvement

– Compilers often cannot make these transformations

– Lack of associativity and distributivity in floating-point 

arithmetic
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