
Page 1

Processes
• Definition: A process is an instance of a running program.

– One of the most profound ideas in computer science

– Not the same as “program” or “processor”

• Process provides each program with two key

abstractions:

– Logical control flow

• Each program seems to have exclusive use of the CPU

• Provided by kernel mechanism called context switching

– Private address space

• Each program seems to have exclusive use of main memory.

• Provided by kernel mechanism called virtual memory

CPU

Registers

Memory

Stack

Heap

Code

Data

Multiprocessing: The (Modern) Reality

• Multicore processors

– Multiple CPUs on single chip

– Share main memory (and some

of the caches)

– Each can execute a separate

process

• Scheduling of processors onto

cores done by kernel

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CPU

Registers

Context Switching
• Processes are managed by a shared chunk of memory-

resident OS code called the kernel

– Important: the kernel is not a separate process, but

rather runs as part of some existing process.

• Control flow passes from one process to another via a

context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Process Control Block (PCB)

OS data structure (in kernel
memory) maintaining information
associated with each process.

• Process state

• Program counter

• CPU registers

• CPU scheduling information

• Memory-management information

• Accounting information

• Information about open files

• maybe kernel stack?

63 64

65 66

Page 2

Today

• Exceptional Control Flow

• Exceptions

• Processes

• Process Control

Creating Processes
• Parent process creates a new running child process by calling fork

• int fork(void)

– Returns 0 to the child process, child’s PID to parent process

– Child is almost identical to parent:

• Child get an identical (but separate) copy of the parent’s virtual address
space.

• Child gets identical copies of the parent’s open file descriptors

• Child has a different PID than the parent

• fork is interesting (and often confusing) because

it is called once but returns twice

fork Example

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent */
printf("parent: x=%d\n", --x);
exit(0);

}

linux> ./fork

parent: x=0

child : x=2

fork.c

 Call once, return twice

 Concurrent execution
▪ Can’t predict execution

order of parent and child

 Duplicate but separate
address space
▪ x has a value of 1 when

fork returns in parent and
child

▪ Subsequent changes to x
are independent

 Shared open files
▪ stdout is the same in

both parent and child

System Call Error Handling
• On error, Linux system-level functions typically return -1

and set global variable errno to indicate cause.

• Hard and fast rule:

– You must check the return status of every system-

level function

– Only exception is the handful of functions that return
void

• Example:

if ((pid = fork()) < 0) {
fprintf(stderr, "fork error: %s\n", strerror(errno));
exit(0);

}

67 68

69 70

Page 3

Error-handling Wrappers

• We simplify the code we present to you even

further by using error-handling wrappers:

pid_t Fork(void)
{

pid_t pid;

if ((pid = fork()) < 0) {
fprintf(stderr, “fork error: %s\n", strerror(errno));
exit(0);

}
return pid;

}

pid = Fork();

Obtaining Process IDs

• pid_t getpid(void)

– Returns PID of current process

• pid_t getppid(void)

– Returns PID of parent process

Creating and Terminating

Processes
From a programmer’s perspective, we can think of a process as being in
one of three states

• Running

– Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

• Stopped

– Process execution is suspended and will not be scheduled until
further notice (next lecture when we study signals)

• Terminated

– Process is stopped permanently

Terminating Processes

• Process becomes terminated for one of three reasons:

– Receiving a signal whose default action is to terminate (next

lecture)

– Returning from the main routine

– Calling the exit function

• void exit(int status)

– Terminates with an exit status of status

– Convention: normal return status is 0, nonzero on error

– Another way to explicitly set the exit status is to return an integer
value from the main routine

• exit is called once but never returns.

71 72

73 74

Page 4

Modeling fork with Process

Graphs
• A process graph is a useful tool for capturing the partial

ordering of statements in a concurrent program:

– Each vertex is the execution of a statement

– a -> b means a happens before b

– Edges can be labeled with current value of variables

– printf vertices can be labeled with output

– Each graph begins with a vertex with no inedges

• Any topological sort of the graph corresponds to a feasible

total ordering.

– Total ordering of vertices where all edges point from left

to right

Process Graph Example

int main()
{

pid_t pid;
int x = 1;

pid = Fork();
if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent */
printf("parent: x=%d\n", --x);
exit(0);

}

child: x=2

main for

k

printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

Interpreting Process Graphs

• Original graph:

• Relabled graph:

child: x=2

main for

k

printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible total ordering:

a b ecf d

Infeasible total ordering:

fork Example: Two consecutive

forks

void fork2()
{

printf("L0\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

}
printf printf fork

printf

printffor

k

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1

Bye
Bye
L1

Bye
Bye

Infeasible output:
L0

Bye
L1

Bye
L1

Bye
Bye

forks.c

75 76

77 78

Page 5

fork Example: Nested forks in

parent
void fork4()
{

printf("L0\n");
if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf fork

printf

printffork

print

f
L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1

Bye
Bye
L2

Bye

Infeasible output:
L0

Bye
L1

Bye
Bye
L2

forks.c

fork Example: Nested forks in

children
void fork5()
{

printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

printf printf

fork

printf

printf

fork

print

f
L0

L2

Bye

L1 Bye

printf

Bye

Feasible output:
L0

Bye
L1
L2

Bye
Bye

Infeasible output:
L0

Bye
L1

Bye
Bye
L2

forks.c

Reaping Child Processes
• Idea

– When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables

– Called a “zombie”

• Living corpse, half alive and half dead

• Reaping

– Performed by parent on terminated child (using wait or

waitpid)

– Parent is given exit status information

– Kernel then deletes zombie child process

• What if parent doesn’t reap?

– If any parent terminates without reaping a child, then the
orphaned child will be reaped by init process (pid == 1)

– So, only need explicit reaping in long-running processes

• e.g., shells and servers

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6639 ttyp9 00:00:03 forks

6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6642 ttyp9 00:00:00 ps

Zombie

Example

• ps shows child process as

“defunct” (i.e., a zombie)

• Killing parent allows child to
be reaped by init

void fork7() {
if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n", getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)

; /* Infinite loop */
}

} forks.c

79 80

81 82

Page 6

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 forks

6677 ttyp9 00:00:00 ps

linux> kill 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6678 ttyp9 00:00:00 ps

Non-Terminating

Child Example

• Child process still active even

though parent has terminated

• Must kill child explicitly, or else

will keep running indefinitely

void fork8()
{

if (fork() == 0) {
/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1)

; /* Infinite loop */
} else {

printf("Terminating Parent, PID = %d\n",
getpid());

exit(0);
}

} forks.c

wait: Synchronizing with Children

• Parent reaps a child by calling the wait function

• int wait(int *child_status)

– Suspends current process until one of its children terminates

– Return value is the pid of the child process that terminated

– If child_status != NULL, then the integer it points to will be

set to a value that indicates reason the child terminated and the

exit status:

• Checked using macros defined in wait.h

– WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,

WIFSTOPPED, WSTOPSIG, WIFCONTINUED

– See textbook for details

wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

printf wait printffork

printf

exit

HP

HC

CT

Bye

forks.c

Feasible output:
HC
HP
CT

Bye

Infeasible output:
HP
CT

Bye
HC

Another wait Example
• If multiple children completed, will take in arbitrary order

• Can use macros WIFEXITED and WEXITSTATUS to get information

about exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

exit(100+i); /* Child */
}

for (i = 0; i < N; i++) { /* Parent */
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
}

forks.c

83 84

85 86

Page 7

waitpid: Waiting for a Specific Process

• pid_t waitpid(pid_t pid, int &status, int options)

– Suspends current process until specific process

terminates

– Various options (see textbook)
void fork11() {

pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */
for (i = N-1; i >= 0; i--) {

pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
} forks.c

execve: Loading and Running Programs

• int execve(char *filename, char *argv[], char *envp[])

• Loads and runs in the current process:

– Executable file filename

• Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

– …with argument list argv

• By convention argv[0]==filename

– …and environment variable list envp

• “name=value” strings (e.g., USER=sandhya)

• getenv, putenv, printenv

• Overwrites code, data, and stack

– Retains PID, open files and signal context

• Called once and never returns

– …except if there is an error

Structure of

the stack

when a new

program

starts

Null-terminated

environment variable strings

Null-terminated

command-line arg strings

envp[n] == NULL

envp[n-1]

...
envp[0]

argv[argc] = NULL

argv[argc-1]

...
argv[0]

Future stack frame for
main

environ

(global var)

Bottom of stack

Top of stack

argv

(in %rsi)

envp

(in %rdx)

Stack frame for
libc_start_main

argc

(in %rdi)

execve Example

envp[n] = NULL

envp[n-1]

envp[0]

…

myargv[argc] = NULL

myargv[2]

myargv[0]

myargv[1]

“/bin/ls”

“-lt”

“/usr/include”

“USER=sandhya”

“PWD=/u/sandhya”

environ

myargv

if ((pid = Fork()) == 0) { /* Child runs program */
if (execve(myargv[0], myargv, environ) < 0) {

printf("%s: Command not found.\n", myargv[0]);
exit(1);

}
}

 Executes “/bin/ls –lt /usr/include” in child process
using current environment:

(argc == 3)

87 88

89 90

Page 8

Summary

• Exceptions

– Events that require nonstandard control flow

– Generated externally (interrupts) or internally (traps and faults)

• Processes

– At any given time, system has multiple active processes

– Only one can execute at a time on a single core, though

– Each process appears to have total control of

processor + private memory space

Summary (cont.)

• Spawning processes

– Call fork

– One call, two returns

• Process completion

– Call exit

– One call, no return

• Reaping and waiting for processes

– Call wait or waitpid

• Loading and running programs

– Call execve (or variant)

– One call, (normally) no return

Breakout/Quiz 7

• If the following program were executed, how

many times would “hello” be printed?

int main() {

fork();

fork();

fork();

printf("hello\n");

exit(0);

}

91 92

93

