Processes Multiprocessing: The (Modern) Reality

+ Definition: A process is an instance of a running program. NEmamy
— One of the most profound ideas in computer science RRSLELLELLELLRD
« ” “ ” 1 | Stack .1 |_Stack : Stack
— Not the same as “program” or “processor Memory ‘ [Heap | ii [Heap | : Heap
: Data Data Y eee Data
Pr rovid h program with two k Stack : [Code Code | : Code
ocess provides each program with two key Heap = = =
abstractions: ga;a registers registers registers
. oae
— Logical control flow : o :
» Each program seems to have exclusive use of the CPU CpPU CPU s CPU * Multicore processors
« Provided by kernel mechanism called context switching | Registers \[Registers || |[Registers]|: — Multiple CPUs on single chip
: : — Share main memory (and some

— Private address space
» Each program seems to have exclusive use of main memory.
» Provided by kernel mechanism called virtual memory

of the caches)
— Each can execute a separate
process

« Scheduling of processors onto
cores done by kernel

63 64

Context Switching Process Control Block (PCB)

» Processes are managed by a shared chunk of memory-

OS data structure (in kernel

resident OS code called the kernel are M R)
} memory) maintaining information . process
— Important: the kernel is not a separate process, but associated with each process. [T state
rather runs as part of some existing process. * Process state process number

Program counter

» Control flow passes from one process to another via a . CPU reai program counter
. registers
context switch + CPU scheduling information registers
Process A : Process B + Memory-management information
: Accounting information memory limits
' ETErh Information about open files list of open files
1

. *+ maybe kernel stack?
kernel code context switch X

Time

user code

kernel code } context switch

user code

65 66

Page 1

+ Exceptional Control Flow

* Exceptions
¢ Processes
* Process Control

Today

Creating Processes

e Parent process creates a new running child process by calling fork

¢« int fork(void)
— Returns 0 to the child process, child’s PID to parent process
— Child is almost identical to parent:

* Child get an identical (but separate) copy of the parent’s virtual address
space.

e Child gets identical copies of the parent’s open file descriptors
e Child has a different PID than the parent

- fork isinteresting (and often confusing) because
itis called once but returns twice

68

67
fork Example
S m Call once, return twice
int main() .
. . m Concurrent execution
ipr:f ;zpi?; = Can’t predict execution
order of parent and child
pid = Fork();

if (pid == 0) { /* Child */
printf("child : x=%d\n", ++x);
exit(0);
}

/* Parent */
printf("parent: x=%d\n", --x);
exit(0);

m Duplicate but separate
address space
® x has a value of 1 when
fork returns in parent and
child
= Subsequent changes to x

fork.c are independent

linux> ./fork
parent: x=0
child : x=2

Shared open files

" stdout is the same in
both parent and child

System Call Error Handling

» On error, Linux system-level functions typically return -1
and set global variable errno to indicate cause.

* Hard and fast rule:

— You must check the return status of every system-
level function

— Only exception is the handful of functions that return
void

+ Example:

if ((pid = fork()) < 0) {
fprintf(stderr, "fork error: %s\n", strerror(errno));
exit(0);

}

69

70

Page 2

Error-handling Wrappers Obtaining Process IDs

* We simplify the code we present to you even * pid t getpid(void)

further by using error-handling wrappers: — Returns PID of current process

pid_t Fork(void) .))
{ e pid t getppid(void)
pid_t pid; -
o — Returns PID of parent process
if ((pid = fork()) < 0) {
fprintf(stderr, “fork error: %s\n", strerror(errno));
exit(0);
}

return pid;

71 72

Creating and Terminating Terminating Processes

Processes
From a programmer’s perspective, we can think of a process as being in * Process becomes terminated for one of three reasons:
one of three states — Receiving a signal whose default action is to terminate (next
lecture)
e Running — Returning from the main routine
— Process is either executing, or waiting to be executed and will — Calling the exit function

eventually be scheduled (i.e., chosen to execute) by the kernel

¢ void exit (int status)

e Stopped — Terminates with an exit status of status

— Process execution is suspended and will not be scheduled until

— Convention: normal return status is 0, nonzero on error
further notice (next lecture when we study signals)

— Another way to explicitly set the exit status is to return an integer
value from the main routine
e Terminated

— Process is stopped permanently ¢ exit is called once but never returns.

73 74

Page 3

total ordering.

to right

Modeling fork with Process
Graphs

» Aprocess graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:

— Each vertex is the execution of a statement
— a ->b means a happens before b
— Edges can be labeled with current value of variables
- printf vertices can be labeled with output
— Each graph begins with a vertex with no inedges
» Any topological sort of the graph corresponds to a feasible

— Total ordering of vertices where all edges point from left

75

+ Original graph:

child: x=2
printf exit
x==1 parent: x=0
main for printf exit
k
* Relabled graph:
e T
B e |

Interpreting Process Graphs

Feasible total ordering:

77

Page 4

int main()

pid_t pid;
intx=1;

pid = Fork();

if (pid == 0) { /* Child */
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent */
printf("parent: x=%d\n", --x);
exit(0);

} fork.c

x==1

Process Graph Example

child: x=2
printf exit

parent: x=0

main for
k

printf exit

Child

Parent

76
fork Example: Two consecutive
forks
Bye
o
void fork2() printf
o o ot
o et e
printf("L1\n");
fork(); printe
intf("B ");
} printfl"eye\n) forks.c Lo I;l Bi’e
printf for printf fork printf

k

Feasible output:

Lo
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:

Lo
Bye
L1
Bye
L1
Bye
Bye

78

fork Example: Nested forks in
parent

void fork4()
printf("LO\n");
if (fork() '= 0) { Bye Bye
printf("L1\n"); prént printf
if (fork() != 0) { Lo 1 L2 Bye
printf("L2\n"); printf fork printf fork printf printf
}
printf("Bye\n");
forks.c
Feasible output: Infeasible output:
Lo Lo
L1 Bye
Bye L1
Bye Bye
L2 Bye
Bye L2

fork Example: Nested forks in
children

void fork5()

{ L2 Bye
printf("LO\n"); [prIntf pfintf
if (fork() == 0) { L1 Bye

printf("L1\n"); print Ork printf

if (fork() == 0) {

£
printf("L2\n"); Lo Bye

printf fork printf

printf("Bye\n");

79

Reaping Child Processes

* Idea
— When process terminates, it still consumes system resources
» Examples: Exit status, various OS tables
— Called a “zombie”
« Living corpse, half alive and half dead
* Reaping
— Performed by parent on terminated child (using wait or
waitpid)
— Parent is given exit status information
— Kernel then deletes zombie child process
* What if parent doesn’t reap?
— If any parent terminates without reaping a child, then the
orphaned child will be reaped by init process (pid == 1)
— So, only need explicit reaping in long-running processes
* e.g., shells and servers

81

} o @ Feasible output: Infeasible output:
Lo Lo
Bye Bye
L1 L1
L2 Bye
Bye Bye
Bye L2
80

void fork7() {

if (fork() == 0) {
H /* Child */
ZO m b I e printf("Terminating Child, PID = %d\n", getpid());
exit(0);
}else{
EXam p I e printf("Running Parent, PID = %d\n", getpid());
while (1)

; /* Infinite loop */

} forks.c

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh .
6639 ttyp9 00:00:03 forks * ps shows child process as
6640 ttyp9 00:00:00 forks <defunct> “defunct” (i.e., a zombie)
6641 ttyp9 00:00:00 ps
linux> kill 6639
1] Terminated * Killing parent allows child to
linux> ps / be reaped by init

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6642 ttyp9 00:00:00 ps

82

Non-Terminating
Child Example

linux> ./forks 8

linux> ps

void fork8()

{
if (fork() == 0) {
/* Child */
printf("Running Child, PID = %d\n",
getpid());
while (1)
; /* Infinite loop */
}else{
printf("Terminating Parent, PID = %d\n",
getpid());
exit(0);

} forks.c

Terminating Parent, PID = 6675
Running Child, PID = 6676 °
linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 fork: .
6677 ttyp9 OOW
linux> kill 6676

Child process still active even
though parent has terminated

Must kill child explicitly, or else
will keep running indefinitely

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps
83
wait: Synchronizing with Children
void fork9() {

int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);

}else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

forks.c

HC exit
printf
CT
HP Bye
'
wait printf

fork printf

Feasible output: Infeasible output:

HC HP
HP CcT
CcT Bye
Bye HC

85

Page 6

wait: Synchronizing with Children

e Parent reaps a child by calling the wait function

e int wait(int *child status)
— Suspends current process until one of its children terminates
— Return value is the pid of the child process that terminated
— If child_status != NULL, then the integer it points to will be
setto a value that indicates reason the child terminated and the
exit status:
» Checked using macros defined in wait.h

— WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,
WIFSTOPPED, WSTOPSIG, WIFCONTINUED

— See textbook for details

84

Another wait Example

« If multiple children completed, will take in arbitrary order

* Can use macros WIFEXITED and WEXITSTATUS to get information
about exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for (i=0; i< N; i++)
if ((pid[i] = fork()) == 0) {
exit(100+i); /* Child */

for (i =0; i < N; i++) { /* Parent */
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);

forks.c

86

waitpid: Waiting for a Specific Process

* pid t waitpid(pid t pid, int &status, int options)

— Suspends current process until specific process
terminates

— Various options (see textbook)

void fork11() {
pid_t pid[N];
inti;
int child_status;

for (i=0;i < N; i++)
i ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
for (i=N-1;i>=0; i--) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

} forks.c

87

Stru cture Of Null-terminated Bottom of stack

environment variable stringg

the StaCk Null-terminated
when a new —emmandine arg stings

e -

program envp[n] == NULL

envp[n-1]

environ
StartS _(global var)
envp [0] & <
argv[argc] = NULL envp
argv[argc-1] (in $rdx)
argv. | . - argv[0]
(in $rsi)
argc Stack frame for
in $rdi libc start main
Lo — — Top of stack

Future stack frame for
main

89

execve: Loading and Running Programs

¢ int execve(char *filename, char *argv[], char *envp[])
* Loads and runs in the current process:
— Executable file filename

* Can be object file or script file beginning with # ! interpreter
(e.g., #!/bin/bash)

— ...with argument list argv
* By convention argv[0]==filename
— ...and environment variable list envp
* “name=value” strings (e.g., USER=sandhya)
* getenv, putenv, printenv
» Overwrites code, data, and stack
— Retains PID, open files and signal context
» Called once and never returns
— ...except if there is an error

88

execve Example

m Executes “/bin/ls -1t /usr/include” in child process
using current environment:

myargv[argc] = NULL
(argc == 3) myargv[2] ——> “/usr/include”
myargv[1l] > “-1t”

]

myargv [0 > “/bin/ls”

myargv ——>

envp[n] = NULL
envp [n-1] ——> “PWD=/u/sandhya”
—> “USER= dhya”
environ envp [0] sandhya

if ((pid = Fork()) == 0) { /* Child runs program */
if (execve(myargv[0], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv[0]);
exit(1);
}
}

920

Summary

« Exceptions
— Events that require nonstandard control flow
— Generated externally (interrupts) or internally (traps and faults)

* Processes
— At any given time, system has multiple active processes
— Only one can execute at a time on a single core, though

— Each process appears to have total control of
processor + private memory space

91

Breakout/Quiz 7

« If the following program were executed, how
many times would “hello” be printed?

int main() {
fork();
fork();
fork();
printf("hello\n");
exit(0);

93

Page 8

Summary (cont.)

Spawning processes

— Call fork

— One call, two returns
Process completion

— Callexit

— One call, no return

Reaping and waiting for processes
— Callwait orwaitpid
Loading and running programs
— Call execve (or variant)

— One call, (normally) no return

92

