Memory Systems

Sandhya Dwarkadas

Memory Hierarchies

Problem: Want unlimited fast memory

Solutions:
- Caches - level of memory hierarchy between CPU and main memory
- Virtual Memory - level between disk and main memory that creates the illusion of a large address space
Principle of locality

- Temporal locality - address referenced in the past will be tend to be referenced again soon
- Spatial locality - if an address is referenced, addresses close by will tend to be referenced soon

Cache Organization

Placement - where is a block placed
Location - how do you locate a block
Re-placement - which block do you replace
Write policy - what happens on a write
Cache Placement Policy

Direct-mapped
Set-associative
Fully-associative

Cache Re-placement Policy

Least Recently Used
FIFO - First-in, First-Out
Random
Write Policy

Write through
Write back

Handling Cache Misses

Instruction cache miss -
• Send the original PC value to memory
• Instruct main memory to perform a read and wait for access to complete
• Write the cache entry - data, tag, and valid bit
• Restart the instruction at the fetch stage
Memory Organization

Memory interleaving -

- memory organized in banks
- full latency incurred only once
- addresses allocated in a round-robin fashion using low-order address bits

Wide memory

Page mode (e.g., EDO (Extended Data Out RAMS)) or synchronous DRAMs (SDRAMs)

Cache Performance

Qualitative Categorization of Misses:
Compulsory, Capacity, Conflict

<table>
<thead>
<tr>
<th>Design Change</th>
<th>Effect on Miss Rate</th>
<th>Negative Performance Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase size</td>
<td>Decrease capacity misses</td>
<td>May increase access time</td>
</tr>
<tr>
<td>Increase associativity</td>
<td>Decrease conflict misses</td>
<td>May increase access time</td>
</tr>
</tbody>
</table>
| Increase block size | May decrease compulsory misses | May increase miss penalty
| | | May increase capacity misses |
Improving Cache Performance

at the Application/Compiler Level

Merging arrays into structures if accessed in a similar manner to improve spatial locality and conflict misses

Loop interchange - to improve spatial locality and reduce capacity misses

Loop fusion - to improve temporal locality and capacity misses

Blocking - to improve temporal locality and capacity and conflict misses