Instruction Set Architectures

Interface between hardware and low-level software

Goal: Find a language that makes it easy to build both the
hardware and the compiler while maximizing performance and
minimizing cost

Programmer’s View - add, subtract, and, or, compare, ...

Computer’s View - strings of 1s and 0Os

The Stored Program Computer

Princeton (Von Neumann) Architecture - stored program
computer - data and instructions mixed in same memory
e better storage utilization

e single memory interface

e program as data (dubious advantage)

Harvard Architecture - data and instructions in separate memory

e has advantages in some high performance implementations

Memory Addressing

Memory can be considered a large single-dimensional array
Memory Address - index to that array starting at 0
Addresses at level of 8-bits (byte) - smallest unit addressable

The instruction set architecture
e determines the size of a single load

e can require alignment of a word on byte boundary (multiple
of size)

e enforces mapping of byte addresses onto words

Byte Ordering

Little Endian byte ordering: Intel 80x86, DEC VAX

high-order low-order
byte byte
Byte Address 3 2 1 0

Big Endian byte ordering: IBM 360/370, Motorola 68K,
MIPS, SPARC, HPPA

high-order low-order
byte byte
Byte Address 0 1 2 3

Problem when they need to communicate

Execution Cycle

1

Instruction
Fetch

T
Instruction
Decode

!

Operand
Fetch
)

Execute

!

Result
Store

!

Next
Instruction

I

Basic Issues In Instruction Set Design

What operations (and how many) should be provided
How (and how many) operands are specified
What data types and sizes

How to encode these into consistent instruction formats

Basic ISA Classes

Accumulator

1 address add A acc <-- acc + meml[A]
Stack

0 address add tos <-- tos + next

General Purpose Register

2 address add A, B EA(A) <-- EA(A) + EA(B)
3 address add A, B, C EA(A) <-- EA(B) + EA(C)
Load/Store
3 address add Ra, Rb, Rc Ra <-- Rb + Rc
load Ra, RDb Ra <-- Mem[Rb]
store Ra, Rb Mem[Rb] <-- Ra

Comparing ISA Classes

Bytes per instruction? Number of instructions? Cycles per
instruction?

Code sequence for C = A + B

Stack Accumulator Register Register
(register-memory) (load-store)
Push A Load A Load R1, A Load R1, A
Push B Add B Add R1, B Load R2, B

Add Store C Store C, R1 ~ Add R3, R1, R2
Pop C Store C, R3

Why General Purpose Registers since 19757

Registers are faster than memory

Registers are easier for a compiler to use - e.g., can perform
operations in any order

Registers can hold variables
e memory traffic is reduced so program is sped up

e code density improves, since register can be named with fewer
bits

Principles of Computer Design

Smaller is faster - number of registers
Simplicity favors regularity
Good design demands compromise - fixed format vs. size

Make the common case fast

