Instruction Set Architectures

Interface between hardware and low-level software

Goal: Find a language that makes it easy to build both the
hardware and the compiler while maximizing performance and
minimizing cost

Programmer’s View - add, subtract, and, or, compare, ...

Computer’s View - strings of 1s and 0Os

Execution Cycle

Instruction
Fetch
v
Instruction
Decode
!
Operand

Fetch
!

Execute

!

Result
Store

!

Next
Instruction

]

Basic Issues In Instruction Set Design

What operations (and how many) should be provided
How (and how many) operands are specified
What data types and sizes

How to encode these into consistent instruction formats

Typical Operations

Data Movement, load /store (from/to memory)
memory-to-memory move
register-to-register move
input/output (from/to I/O device)
push /pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
add, subtract, multiply, divide
Logical not, and, or, set, clear
Shift shift left/right, rotate left/right
Control (Jump/Branch) unconditional, conditional
Subroutine Linkage call, return
Interrupt trap, return
Synchronization test&set (atomic read-modify-write)

String search, translate

Control Flow

Need to be able to test conditions for conditional control transfers

Four basic conditions: N — negative; Z — zero; V' — overflow; C' —

carry;

Sixteen comb[ijnations of the basic four conditions:

Always
Never

Not Equal
Equal

nconditional
NOP
~Z
Z

Greater ~[Z+(NV)]
Less or Equal Z+(N@V)
Greater or Equal ~(NpV)
Less NV
Greater Unsigned ~(C+2)
Less or Equal Unsigned C+Z

Carry Clear ~C

Carry Set C

Positive ~N
Negative N

Overflow Clear ~V
Overflow Set 14

Methods of Testing Conditions

e Condition Codes: Processor status bits are set as a side effect
of arithmetic instructions (possibly on moves), or explicitly by
compare or test instructions.

ex: add ril, r2, r3

bz label
e Condition Register:

ex: cmp rl, r2, r3

bgt rl, label
e Compare and Branch: combine the above two instructions

ex: bgt rl, r2, label

Addressing Modes

Addressing mode Example Meaning
Register Add R4,R3 R4-R4+4+R3
Immediate Add R4,#3 R4<-R4+3
Displacement Add R4,100(R1) R4<R44+Mem[100+R1]
Register indirect Add R4,(R1) R4<—R4+Mem[R1]
Indexed Add R3,(R1+R2) R3+-R3+Mem[R1+R2]
Direct or absolute ~ Add R1,(1001) R1+-R1+Mem[1001]
Memory indirect ~ Add R1,@(R3) R1+R1+Mem[Mem[R3]]

Auto-increment Add R1,(R2)+ RI«+RI1+Mem[R2|; R2«-R2+
Auto-decrement, Add R1,-(R2) R2+-R2-d; R1<-R1+Mem|[R2
Scaled Add R1,100(R2)[R3] R1<R1+Mem[100-+R2+R3*d

Instruction Format

Can be fixed length, variable length, or a hybrid

If we have many memory operands per instruction and many
addressing modes, we need an Address Specifier per node

If we have a load-store machine with 1 address per instruction
and one or two addressing modes, then we can encode the
addressing mode in the opcode

Data Types and Sizes

e Bit: 0, 1

e Bit String: sequence of bits of a particulat length — 4
bits=nibble, 8 bits=byte, 16 bits=half-word, 32 bits=word

e Character: ASCII - 7 bit code, EBCDIC - 8 bit code

e Decimal: digits 0-9 encoded as 0000b through 1001b, two
decimal digits packed per 8 bit byte

e Integers: sign&magnitude, 1’s complement, or 2’s complement
representation

e Floating Point: single precision, double precision, extended
precision - M X RE , where M=mantissa, R=Dbase,
E=exponent

