Instruction Formats

op: operation of the instruction

rs: the first register source operand
rt: the second register source operand
rd: the register destination operand
shamt: shift amount

funct: function; variant of the operation in the op field

High-level Construct Support

Conditionals - if-then-else
Loops
Case statements - switch

Procedure calls




Stacks

Last-In-First-Out queue
Used to spill registers
Pointer to top of stack

Push and pop operations

Procedure Calls

Pass arguments to procedure
Allocate registers for program variables
Produce code for body of procedure

Preserve registers across procedure invocations

e Caller saves registers

e Callee saves registers




RISC Open Issues

Register usage
Setting of condition codes
Byte ordering

Hardware interlocks

Register Usage

Registers used in order to reduce memory traffic
Large % of memory traffic related to procedure calls

Larger number of registers implies more bits for op encoding




Solution: Overlapping register windows / Multiple register sets

e subset of registers visible at a time (say 32)
e current window pointer (CWP) points to active window
e circular buffer - advance CWP on procedure call

o register file overflow results in trap

Caches Versus Register Files

Caches hold instructions and data

No rigid split - adapts dynamically to usage pattern

Tag and valid bits add chip area overhead not used for data
Requires full memory address for access

Fast process switching but slower procedure calls




SPARC Versus MIPS

SPARC - Multiple register sets, versions of instructions that set
condition codes, no mult/div instructions, big endian, hardware
register interlocks for loads

MIPS - Single register set, big/little endian, mult/div
instructions that take multiple cycles, no condition codes, no
hardware interlocks, deeper pipeline stage

Design Principles for RISC Machines

1. Analyze the applications to find the key operations
2. Design a data path that is optimal for key operations

3. Design instructions that perform the key operations using the
data path (registers+ALU)

4. Add new instructions only if they do not slow down the
machine

5. Repeat this process for other resources




RISC Versus CISC

One instruction per data path cycle

Load/store architecture (only register addressing permitted for
ordinary instructions)

Pipelining - one instruction issued each cycle

No microcode (hardwired for the common case) - reduced chip
area

Increased memory usage

Fixed-format instructions

Reduced Instruction set

Put the complexity in the compiler - delayed loads, reduced
addressing modes, optimize register usage

Multiple register sets




