Performance Metrics for Communication Mechanisms

Communication bandwidth - limited by time for which resources
within a node are tied up (occupancy), in addition to processor,
memory, and interconnection bandwidths

Communication latency - sender overhead + time of flight +
transport latency + receiver overhead (overhead and occupancy
closely related)

Communication latency hiding - how well can the mechanism
hide latency by overlapping communication with computation or
other communication

Multiprocessor Systems Design:
Coherence, Synchronization, and Consistency Issues

Sandhya Dwarkadas
Department of Computer Science
University of Rochester

Advantages of Shared Memory

Ease of programming when communication patterns are complex
or vary dynamically during execution

Better use of bandwidth when communicating small items (lower
overhead) - protection implemented in hardware, communication
implicit

Use of hardware-controlled automatic caching with reduced
latency and contention for accessing shared data

Flynn’s Taxonomy of Parallel Architectures

Single instruction stream, single data stream (SISD)
- uniprocessor

Single instruction stream, multiple data streams (SIMD)

Multiple instruction streams, single data stream (MISD)
- no existing commercial implementation

Multiple instruction streams, multiple data streams (MIMD)

Advantages of Message Passing

Simpler hardware - better scalability

Explicit communication, focusing attention on its cost

MIMD Issues

Data sharing - single versus multiple address spaces
Process coordination - synchronization using lock or messages
Distributed versus centralized memory

Connectivity - single shared bus versus network with many
different topologies

Fault tolerance

Problems

Amdahl’s law - insufficient parallelism

Speedup = ; 1
Fractiongphanced .
Speedup, pemetélt (1= Fractionenhanced)

High-latency communication

Portability - knowledge of architecture required

MIMD Machines

Classification based on memory organization
e Centralized shared memory architecture - uniform memory
access (UMA)

o distributed memory architectures

— distributed (or scalable) shared memory architectures
(NUMA)
— Multi-computers

Models for communication
o shared memory

® message passing




Cache Coherence Protocols

Snooping - sharing status broadcast to all copies

Directory-based - sharing status of each block of data kept in one
location

Message Passing Machines
Multiple private address spaces - MIMD connected by a network
(no lockstep operation)
Interconnection used only for inter-processor communication
Processes communicate via explicit messages (sends and recvs)

Synchronization implicit in the message

Snoopy-Based Protocols

Write Invalidate Protocol

Write Update Protocol

Distributed Shared Memory Without Coherence

Example - Cray T3D

A Simple Invalidate-Based Snoopy Protocol

Finite State Machine with three states -
o [nvalid

o Shared/read-only (clean)
o Modified /read-write (not shared)

Single Bus Shared Memory Architecture - MIMD

Mechanisms for Efficiency

Dual cache tags

Multi-level cache hierarchy with inclusion

Coherence Versus Consistency

Cache coherence - ensuring that modifications made by a
processor propagate to all (cached) copies of the data -
mechanism used

e program order preserved

e Writes to the same location by different processors serialized
o defines the behavior of reads and writes to the same memory
location

Consistency - defines when and in what order modifications
are propagated to other processors
e defines the behavior of reads and writes with respect to
accesses to other memory locations




Implementing Locks Using Coherence

On a SPARC: ldstub moves an unsigned byte into the destination

register, and rewrites the same byte in memory to all 1s.
_Lock:

ldstub [%00], %ol

addcc %g0, %ol, %g0

bne _Lock
nop

fin: jmpl %r15+8, %g0
nop

_UnLock:

st %g0, [%o0]
jmpl %ri5+8, %g0
nop

Directory-Based Cache Coherence Protocols
A directory keeps track of the state of every block that may be
cached - sharing status in single location
Directory entries distributed along with the memory

States
o Shared
e Uncached

e Exclusive

How would you improve scalability?

Artificially delay processor - exponential backoff

Use a software queue

Example Directory Protocol

Possible messages
e Read miss - request data from home node

o Write miss - request data from home node

o Invalidate - invalidate a shared copy of data

® Fetch - fetch a block from remote cache to home node

o Fetch/invalidate - fetch and invalidate block at remote cache
® Data value reply - return data value from home node

e Data write back - write back data to home node

Hardware Primitives

Queueing locks instead of letting all processors try again
Assumption: directory-based coherence
Synchronization controller returns lock if free on a miss

Else, create a record of the node’s request - let’s the processor
spin on locked value

When freed, controller updates lock variable in selected
processor’s cache

Basic Hardware Mechanisms for Synchronization

Must provide the ability to atomically read and modify a
memory location
® Test-and-set - atomic exchange
® Fetch-and-increment - returns value and atomically
increments it

® Load-locked/store conditional - pair of instructions - deduce
atomicity if second instruction returns correct value

Memory Consistency Models

When must a processor see a value that has been updated by
another processor?

P1: A =0; P2: B = 0;

Using 11/sc for Atomic Exchange

Swap the content of R4 with the memory location specified by R1

try: mov R3, R4 ; mov exchange value
11 R2, O(R1) ; load linked
sc R3, 0(R1) ; store conditional

branch if store fails
put load value in R4

beqz R3, try
mov R4, R2




Review

A broad overview of multiprocessor systems design issues
o Flynn’s classification
e shared memory vs. message passing
® Snoopy-based versus directory-based coherence
o Synchronization primitives

o Consistency models

Consistency Model Classification

Models vary along the following dimensions

® Local order - order of a processor’s accesses as scen locally
o Global order - order of a single processor’s accesses as seen by
cach of the other processors

o Interleaved order - order of interleaving of different processor’s
accesses on othcr processors

Sequential Consistency

“A system is sequentially consistent if the result of any execution
is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order
specified by its program.” [Lamport 79]

Processor Consistency

Also called Total Store Order (TSO - IBM 370, DEC VAX,
SPARC)

“A multiprocessor is said to be processor consistent if the result
of any execution is the same as if the operations of each
individual processor appear in the sequential order specified by
its program.” [Goodman 91]

Release Consistency

Implemented in DEC Alpha

Assume data-race-free (synchronized) programs [Ghara. 90]
Distinguish ordinary accesses and synchronization accesses
Separate synchronization accesses into acquires and releases

Guarantee consistency of ordinary data only after release ~»
architectural optimizations such as buffering to hid latency




