Periphals and Interfaces

Sandhya Dwarkadas

I/0O Issues

Addressing
Interconnection

Interface




I/O Devices

Block devices - info stored in fixed-size blocks that are
addressable

Character devices - accepts or delivers a stream of characters - no
block structure or seek operation - e.g., printers, mice, network
interfaces

[/O unit can be divided into -

e Electro-Mechanical component

e Electronic component - device controller - PCB in slot on
motherboard - usually with a standardized interface

Magnetic Disks

Block device - 512-32K byte blocks

Device-independent interfaces - IDE (Integrated Drive
Electronics) or SCSI (Small Computer System Interface) disk
controller interfaces

Disk organization - tracks, sectors, cylinders

Contributors to disk access time
e seek time

e rotational latency
e transfer time

e controller overhead




Buses

A bus is a shared communication link with one set of “wires” to
connect multiple parts of the computer

e Processor-Memory Buses

e Backplane Buses
¢ 1/O Buses

Bus Performance

Limited by physical factors - length of the bus and number of
devices

Minimize bus latency by streamlining the communication path

Maximize bus bandwidth using buffering and larger blocks of
data




Bus Transactions

A bus transaction has two parts:

e sending the address

e receiving or sending the data

Bus Design Options

Decisions depend on the cost and performance goals

Option High Performance | Low Cost

Bus width Separate address | Multiplex address
and data lines and data lines

Data width Wide Narrow

Transfer size

Multiple-word

Single-word

reduces overhead |is simpler
Bus masters Multiple Single
Split transaction | Yes No
Clocking Synchronous Asynchronous




Synchronous Versus Asynchronous Buses

Synchronous - includes a clock in the control lines and a fixed
protocol for address and data relative to the clock

e simple, therefore fast
e all devices must run at same speed
e clock-skew limits the length of the bus if speed is desired

Asynchronous - self-timed, handshaking protocol used
between the sender and the receiver - DataReq, DataRdy, and
Ack control lines

e easier to accommodate a wide variety of devices
e length of the bus can be increased

e slower due to handshaking

Bus Arbitration

Bus Request, Bus Grant, and Bus Release signals to control
access to bus

e Daisy chain
e Centralized, parallel (PCI bus uses this)
e Distributed, self-selection

e Distributed, collision detection




Methods of Addressing I/O Devices

Memory-mapped 1/O - e.g., MIPS, SPARC, Motorola processors

Alternate address space with special 1/O instructions - e.g., IBM,
Intel processors
Example: “IN acc, port #”

Techniques for Performing I/0

Programmed /O with busy waiting
Interrupt-driven 1/0

DMA (Direct-Memory Access) 1/0

[/O using data channels




Interrupts

An asynchronous electrical event that uses a hardware interrupt
request line (IRQ)

Causes processor to halt execution of current program and
execute 1/0O code

IRQ mapped to interrupt vector, which locates corresponding
interrupt service software

User-Space I/O Software

System calls made via library procedures
Example: count = write(fd, buffer, nbytes)
printf, scanf - does more work

E.g., Printer:

e Create a special process called a daemon
e Create a special spooling directory

— deals with dedicated 1/O devices in a multiprogrammed
system

— prevents starvation




Principles of I/O Software

e Device independence

e Uniform naming

Structure

e User-level software called by user process (top) - make I/O
calls, format 1/0, spooling

e Device-independent operating systems software - naming,
protection, blocking, buffering, allocation

e Device drivers - set up device registers, check status
e Interrupt handlers - wake up driver when 1/O is complete

e Hardware - perform 1/O operation

Hardware Actions on Interrupt

1. Assert interrupt line

2. CPU then asserts int. ack. line when ready

3. Device controller then places interrupt vector on data lines
4. CPU saves interrupt vector temporarily

5. CPU pushes PC and PSW onto stack

6. CPU locates new PC by using interrupt vector as index into
table at a fixed location in memory




Software Actions on Interrupt

1. Save all registers on stack or in system table (must disable
interrupts while doing this)

2. Read device register for exactly which device - generally
shared by all devices of a given type

. Read status codes of device

. Handle any 1/0O errors

. Update data structures

. Tell device interrupt has been processed if necessary

. Restore registers

O J O Ot = W

. Execute return from interrupt

Interconnection Networks

Types

e RS232 standard - slow but cheap dedicated wires for terminal
network

e Massively parallel processor network (MPP) - max. distance
25 meters

e Local area networks (LAN) - ethernet, FDDI - few km.

e Wide area networks (WAN) - e.g., ARPANET (1st), Internet
- 1000s of km




Interconnection Network Media

Twisted pair
Coaxial cable

Fiber optic

Network Topology

Shared - e.g., ethernet - CSMA/CD (Carrier-Sense Multiple
Access/Collision Detect)

Switched - point-to-point
e star - e.g., ATM

e ring - e.g., Token-Ring, FDDI (Fiber Distributed Data
Interface)

e crosshar

e omega (multistage network), fat tree




Network Architecture

Design and Implementation Guide
Principle of Abstraction - layering of protocols

A protocol provides a communication service to the next
higher-level layer

e Service interface - e.g., send and receive

e Peer interface - form and meaning of messages exchanged
between peers

Network Architecture Issues

Encapsulation - header and body of message

Multiplexing /demultiplexing - keys in headers to identify target
application




OSI Architecture

Partitioning of network functionality into seven layers - reference
model for a protocol graph

End Host Switches End Host
Application Application
Presentation Presel]tation

Session Session

Transport Transport

Net\lvork Network Net\Tvork Network

Data link Data link Data link Data link

Physical Physical —— Physical Physical

[ssues affecting software interface to network or I/O device

e Consistency with processor’s cache
e Programmed I/O or DMA

e Polling versus interrupts




Network Performance Issues

Effective bandwidth /total latency is a function of -

e Sender Overhead - buffering, error-code generation,
OS/controller actions

e Receiver overhead - buffering, error checking, OS/controller
actions

e Time of flight (latency)

e Transmission time (a function of available bandwidth)




