
11/17/2018

1

Memory Protection
OS GUEST LECTURE

XIAOWAN DONG

11/15/2018

1

Operating Systems Protection
Goal: Ensure data confidentiality + data integrity + systems availability

Protection domain = the set of accessible objects + access rights

File A [RW]
File B [RWX]

File C [R]
File D [RW]

File E [RX]
File F [R]

Printer 1 [W]

Domain 1 Domain 2 Domain 3

2

Private Virtual Address Space
Most common memory protection
mechanism in current OS

Each process has a private virtual
address space
◦ Set of accessible objects: virtual pages

mapped

◦ Access rights: access permissions to
each virtual page

Recorded in per-process page table

◦ Virtual-to-physical translation +
access permissions

Physical
frame no

Access
Rights

… …

P1 RW

P2 RW

P3 RW

P4 RW

… …

Segment 1
Segment 1

Private Virtual addr space

Physical addr spacePrivate Page table

Segment 2

Segment 2

3

Segment 3

Challenges of Sharing Memory
Difficult to share pointer-based data
structures
◦ Data may map to different virtual addresses

in different address spaces

Process A virtual
addr space

Process B virtual
addr space

Physical
addr space

4

11/17/2018

2

Challenges of Sharing Memory
Potential duplicate virtual-to-physical
translation information for shared
memory
◦ Page table is per-process at page

granularity

◦ Single copy of the physical memory, multiple
copies of the mapping info (even if identical)

Process A page
table

Process B page
table

Physical
addr space

5

Challenges for Memory Sharing
Potential duplicate virtual-to-physical
translation information for shared
memory
◦ Single copy of the physical memory, multiple

copies of the mapping info (even if identical)

◦ Duplication in Translation Lookaside Buffer
(TLB) and memory hierarchy (caches, main
memory)

Processor

TLB L1 cache

L2 cache

Last-level cache

Memory
Page
Table

6

Challenges for Changing Access
Permissions of Memory Regions
Changing access permissions of
an entire memory region is
expensive
◦ E.g., disabling writes to a memory

region across processes

Page table is at page granularity
on per-process basis

Required to traverse each page
table entry of each virtual
address space

Physical
addr space

Seg 1

Physical
frame

no

Access
Rights

P1 R

P2 R

P3 R

…

Physical
frame

no

Access
Rights

P1 RWX

P2 RWX

P3 RWX

…

7

Process A page
table

Process B page
table

Are there any other memory protection mechanisms
besides private virtual address space?

8

11/17/2018

3

Outline
Single address space
◦ Domain-page model

◦ Page-group model

State-of-art memory protection mechanisms
◦ ARM protection domains

◦ Intel Memory Protection Keys

9

Outline
Single address space
◦ Domain-page model

◦ Page-group model

State-of-art memory protection mechanisms
◦ ARM protection domains

◦ Intel Memory Protection Keys

10

Single Address Space
One single virtual address space shared
across processes

One virtual address is mapped to a unique
physical address

Simplifies memory sharing compared to
private virtual address space

Proposed in the 90s
◦ Emerging 64-bit address space

Seg 2

RWX

Process A’s view of
virtual addr space

Process B’s view of
virtual addr space

Physical
addr space

Seg 1

RX

11

Single Address Space
Can we use page table like in private
virtual address space
◦ Recorded at page granularity per

process
◦ Virtual-to-physical translation information

◦ Access permissions

Duplicate translation information
◦ Translation of a virtual page is unique

across processes

Other protection domain models
◦ Domain-page model

◦ Page-group model

Physical
addr space

Seg 1

Physical
frame

no

Access
Rights

P1 R

P2 R

P3 R

…

Physical
frame

no

Access
Rights

P1 RWX

P2 RWX

P3 RWX

…

Process A’s
page table

Process B’s
page table

12

11/17/2018

4

Outline
Single address space
◦ Domain-page model

◦ Page-group model

State-of-art memory protection mechanisms
◦ ARM protection domains

◦ Intel Memory Protection Keys

13

Single Address Space: Domain-Page
Model
Protection domain = set of accessible pages + access permissions

Capability list

Each (domain, page) pair is unique
◦ Access rights associated with (domain, page)

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6

Domain A R RW RWX

Domain B R-X R R R

Domain C RWX R-X RW

14

Protection Lookaside Buffer
One implementation of domain-page
model

Translation lookaside buffer (TLB)
◦ On-chip cache of page table

◦ Virtual-to-physical translation information +
access permissions

Protection Lookaside buffer (PLB)
◦ Only records access permissions

◦ Translation information is saved separately

Processor

TLB L1 cache

L2 cache

Last-level cache

Memory
Page
Table

Virtual page Physical page Access rights

15

Protection Lookaside Buffer (PLB)

Image Source: ASPLOS , “Architecture support for single address space operating systems”,1992.

16

11/17/2018

5

PLB Advantages
No duplicate translation information
◦ Each page has a single translation entry in TLB and memory hierarchy

Changing access permission of a memory region is cheaper
◦ Use a single PLB entry for the entire memory region (stack, code segment and etc.)

◦ Only required to modify one PLB entry

17

Outline
Single address space
◦ Domain-page model

◦ Page-group model

State-of-art memory protection mechanisms
◦ ARM protection domains

◦ Intel Memory Protection Keys

18

Single Address Space: Page-Group Model
Page group is a set of pages
◦ Each page belongs to a single page group

Access permissions associated with each page
◦ As opposed to (domain, page) pair in the domain-page group

Protection domain = set of accessible page groups + access permissions

Page 1
Page 2
Page 3

Page 4
Page 5

Page 6
Page 7
Page 8

Page Group A Page Group B Page Group C

Group A Group B Group C

Process I √ √

Process II √ √

Process III √

19

PA-RISC
An architecture of page-group model designed by HP

Each process has 4 page-group registers (PID) for accessible page group IDs
◦ One additional write-disable bit that disables writes to the entire page group

Each process runs in one of the 4 privilege levels
◦ 0 (the highest) to 3

Privilege level PID1 PID2 PID3 PID4

Process I 0 3 11 6 9

Process II 3 11 12 13 14

Process III 2 3 6 9 5

20

11/17/2018

6

PA-RISC
Each page has unique translation information and access permissions
◦ Recorded in page table/TLB

◦ Access permission = read, write, execute and the corresponding privilege levels
◦ E.g., writable from privilege level 0, readable from level 0, 1 and 2, and inaccessible from level 3

◦ No duplicate translation information

21

PA-RISC
Whether accessible
◦ Determined by PID

registers

Access permission =
Rights in TLB based
on privilege level +
write-disable bit

Image source: ASPLOS , “Architecture support for single address space operating systems”,1992.

22

Outline
Single address space
◦ Domain-page model

◦ Page-group model

State-of-art memory protection mechanisms
◦ ARM protection domains

◦ Intel Memory Protection Keys

23

State-of-Art Memory Protection
Modern architectures use private virtual address spaces
◦ As supported in modern OSs such as Linux and FreeBSD

However, they also provide other memory protection models
◦ Like ARM and Intel

24

11/17/2018

7

Outline
Single address space
◦ Domain-page model

◦ Page-group model

State-of-art memory protection mechanisms
◦ ARM protection domains

◦ Intel Memory Protection Keys

25

ARM Protection Domain
Domain = set of accessible pages

32-bit ARM supports 16 domains

Domain access control register (DACR)
◦ Defines the access permissions of current

process to 16 domains (2 bits per domain)

◦ Saved in process control block when the current
process is context switched off

Each page belongs to a domain
◦ Identified by the domain field in page table entry

00 01 01 … 10

User Space
Kernel
Space

Domain 2Domain 1

DACR

16 domains

00: No access permission
01: Based on permission bits listed in page table
10: RWX permissions

26

ARM Protection Model
TLB lookup

(By VPN and ASID)

Access permission
check based on TLB

and domain

Abort
exception

TLB hit

Domain permission
check fails

00 01 01 … 10 DACR

16 domains

VPN ASID 0 0010 Permission
bits

Domain ID

TLB

00: No access permission
01: Based on permission bits listed in page table
10: RWX permissions

Address Space Identifier

27

ARM Protection Domain
A legacy feature that is not in use in reality
◦ Only domain 1 (user space) and 2 (kernel space) are in use

◦ Removed from 64-bit ARM architecture

Any other use cases
◦ Alleviate duplicate translation information on Android

28

11/17/2018

8

ARM Protection Domain:
A Use Case on Android

29

Duplicate Translation info on Android
Android uses Linux kernel and thus
uses private virtual address space

58% duplicate page table pages for
shared libraries on Android

All android applications share the
same virtual and physical addresses for
the preloaded shared libraries
◦ Due to Android process creation model

30

Android Application Instruction Footprint
Most of the instructions accessed are
from shared libraries preloaded

Number of shared libraries per
application:
◦ Loaded: 88 to 107 (zygote-preloaded: 88)

◦ Invoked: 24 to 68 (zygote-preloaded: 21 to
46) 0%

20%

40%

60%

80%

100%

A
n

gr
yb

ir
d

s

A
d

o
b

e
 R

e
ad

er

A
n

d
ro

id
 B

ro
w

se
r

C
h

ro
m

e

C
h

ro
m

e
Sa

n
d

b
o

x

C
h

ro
m

e
P

ri
vi

le
ge

Em
ai

l

G
o

o
gl

e
C

al
e

n
d

ar

M
X

 P
la

ye
r

La
ya

 M
u

si
c

P
la

ye
r

W
P

S

A
ve

ra
ge

% of inst fetched

zygote-preloaded shared lib other shared lib

98%

72%

31

Android Application Instruction Footprint
Considerable overlap in the shared
library code accessed across different
applications

◦ 46% of total inst pages accessed are in
common for each pair of applications

◦ Zygote-preloaded: 38%

Laya Music
Player

Adobe
Reader

MX
Player

72%

The % of inst footprint overlapped

91% 85%

32

11/17/2018

9

Sharing TLB for Shared Libraries
To alleviate duplication, we share page table and TLB for preloaded shared
libraries across all Android processes [Eurosys’16, IISWC’15]
◦ In this talk we only focus on sharing TLB

We use Global bit and ARM protection domain

Global bit
◦ Traditionally used for kernel-space translation

◦ Kernel space mappings are identical and therefore shared across processes

◦ Overrides Address Space Identifier (ASID) in TLB

33

Sharing TLB for Shared Libraries
Global bit
◦ Set the global bit in the page table entries of the preloaded shared libraries

◦ To share TLB entries

ARM protection domain
◦ There are other process (system services and daemons) not forked from the template

◦ Prevents them from accessing the shared global TLB entries

◦ To unshare TLB entries

34

35

Zygote-
preloaded

shared
libraries

User Space
Kernel
Space

Domain 2Domain 1 Domain 3

… 00 …
Other
processes

… 01 …Android
processes

Domain 3

DACR

VPN ASID 1 0011 Permission
bits

Global bit Domain field

TLB

Memory Abort
Handler Trap into kernel

Domain
fault ?

Check fault
status register

Flush all TLB
entries with the
faulting address

00: No access permission
01: Based on permission bits listed in the TLB entry

Outline
Single address space
◦ Domain-page model

◦ Page-group model

State-of-art memory protection mechanisms
◦ ARM protection domains

◦ Intel Memory Protection Keys

36

11/17/2018

10

Intel Memory Protection Keys
Similar to 32-bit ARM protection domain model
◦ While 64-bit ARM removes it, Intel brings it back

Goal: Applications can efficiently modify access permissions at memory region
granularity

Only applied to user-space pages

37

Intel Memory Protection Keys
Intel supports 16 domains

Protection key rights for user pages (PKU) register:
◦ Specifies the access permissions of current process to 16 domains

◦ 2 bits per domain (access disable bit + write disable bit)
◦ Configurable in user space

Each page is associated with a protection key
◦ Recorded in page table entry

Domain = set of accessible pages with the same protection key

Access permission check: page table entry permissions + protection key
permissions (access disable? Write disable?)

38

Conclusions
Per-process private virtual address space interferences with memory sharing

Duplication of address translation information resulted from private virtual
address space

Changing access permissions at memory region granularity is expensive with
page table

Other memory protection models can be leveraged:
◦ Single address space

◦ State-of-art mechanisms (ARM protection domain and Intel MPK)

39

