Operating Systems

Distributed File Systems

CS 256/456

Dept. of Computer Science, University
of Rochester

11/21/2013 CSC 2/456 1

Distributed System

A collection of loosely coupled processors
interconnected by a communication network

— Do not share memory or a clock
— Remote versus local resource access

11/21/2013 CSC 2/456

Network vs. Distributed Operating
Systems

* Network operating system:
— Users aware of multiple machines
— Data/computation migration -> user’s
responsibility
« Distributed operating system:
— Access to remote resources similar to local

— Data/computation migration under control of
0Ss

11/21/2013 CSC 2/456 3

CSC 256/456

Data Migration

* Whole files (automated ftp): e.g., AFS first
version

* On-demand (demand paging): e.g., NFS, SMB,
AFS newer versions

11/21/2013 CSC 2/456

11/21/2013

Operating Systems

Computation Migration

* RPC
* Messages (more concurrency)

11/21/2013 CSC 2/456 5

Process Migration

» Rationale
— Load balancing
— Computation speedup
— Hardware preference
— Software preference
— Data access

+ Either automated (transparent) or user specifies
how the process should migrate

11/21/2013 CSC 2/456

Distributed File System

* One in which
— clients,
— servers (file servers/service software)), and

— storage devices (potentially multiple and
independent)

are dispersed among the machines of a distributed
system and requires networked/messaging activity

11/21/2013 CSC 2/456 7

CSC 256/456

Naming and Transparency

* Possible schemes
— Host:local-name
— Attach remote directories (mount: NFS)
— Single global name structure (AFS)

 Location transparency vs. location
independence?

11/21/2013 CSC 2/456

11/21/2013

Operating Systems

Caching and Coherence

* Remote-service mechanism
— Stateful vs. stateless

» Caching and coherence
— Caching granularity

— Cache update policy (write through vs.
delayed write)

— Client-initiated vs. server-initiated

11/21/2013 CSC 2/456

Reliability and File Replication

» Reliability and file replication

— Naming transparency
— Availability vs. consistency

11/21/2013 CSC 2/456 10

NFS (Network File System)

+ Deals with heterogeneity using RPC/XDR
» Stateless — no open and close of files
* Interface transparent to user via VFS

11/21/2013 CSC 2/456

1

CSC 256/456

The Andrew File System (AFS)

Unified namespace (one /afs for everybody)
One read-write copy

Protection using access control lists (ACLS)
Security using Kerberos 5 authentication

11/21/2013 CSC 2/456 12

11/21/2013

Operating Systems

AFS: Namespace

* Managed by dedicated servers called “Vice”

* Local (root file system) and shared namespace
with mounting similar to NFS

* Files partitioned into volumes

— typically files of a single client

— Possible migration and replication of volumes
* Clients run “Virtue” protocol

11/21/2013 CSC 2/456 13

AFS: Security and Protection

* Security

— Connection-based communication based on
RPC

— Encrypted

» Protection

— Directories have access control lists
< Allowed users or users not allowed

— Regular UNIX bits for file protection

11/21/2013 CSC 2/456 14

AFS: Caching and Coherence

» Caching of entire files
— Callback mechanism to eliminate cached
copies
— One read-write copy

11/21/2013 CSC 2/456 15

Distributed File Systems Issues

* Naming and transparency (location transparency versus location
independence)

— Host:local-name
— Attach remote directories (mount)
— Single global name structure
* Remote file access
— Remote-service mechanism
« Stateful vs. stateless
— Caching and coherence
» Cache update policy (write through vs. delayed write)
« Client-initiated vs. server-initiated
» Reliability and file replication
— Naming transparency
— Availability vs. consistency

11/21/2013 CSC 2/456 16

CSC 256/456

11/21/2013

Operating Systems

Distributed File Systems:
Issues of Scale

CSC 2/456

11/21/2013

17

» Component failures are normal

Google File System - Motivation

Fault tolerance and automatic recovery are needed
» Huge files are common (Multi GB)
Revisited I/0O and block size assumptions
Record appends are prevalent than random writes
Appending is the focus of performance optimization and
atomicity guarantees
Co-designing applications and the file-system API for
flexibility
Relaxed consistency model
Atomic append

»

11/21/2013

What is GPFS (1/2)

» A parallel, shared-disk file system for cluster computers

» Developed by IBM since 1993

» Available on AIX, linux and MS Windows Server 2003.

» Used on 6 of the 10 most powerful supercomputers in the world
Extreme scalability!!

CSC 2/456

11/21/2013

19

11/21/2013 CSC 2/456 18
What is GPFS (2/2)
» Extreme scalability from its shared-disk architecture
_ S
Disk number: up to 4k r r ==
Disk size: up to 1TB - - P
= Switching —
- A - fabric | —
] g
i -~ storage File system

nodes
Shared disks nodes

11/21/2013 CSC 2/456 20

CSC 256/456

Operating Systems

GPFS vs. GFS

GFS: Single Master + Multiply trunk server + Multiple client

GFS master » ifo
File namepoce

file wame. clounk index) |

e wie
‘chiak Lo<ations) y
f

R I l J metadata

Clamkserver st

data

e
(chunk bascle. byte range)
| b Y o

Gr: GFS chunkserver
[L i v L e system

[
) i

eluak dat

managor nodes

em nodes .‘

nodes (could be any of the file system nodes) -,

Mana,

Storage nodes (4
4/ switching
/ 7 fabric
L sons o systom
‘shared disks nodes

11/21/2013 CSC 2/456

21

CSC 256/456

[[coogleFilesysem _JGPrs |

Application Type

Data access assumption

File Size assumption
Consistency

Synchronization

Caching
Data Unit

Fault Tolerance

11/21/2013

Large, distributed
data-intensive

Large streaming r/w
Mainly record appends

Usually huge
Relaxed

Centralized Management

Not needed
Chunk (64MB)

Constant monitoring
Fast recovery
Replication

CSC 2/456

Supercomputing
other...

None

None

Distributed locking +
Centralized Management
Needed

Block(typically 256KB)

Logging & recovery
Support of RAID
Replication

22

11/21/2013

