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Distributed System

A collection of loosely coupled processors
interconnected by a communication network

— Do not share memory or a clock
— Remote versus local resource access
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Network vs. Distributed Operating
Systems

* Network operating system:
— Users aware of multiple machines
— Data/computation migration -> user’s
responsibility
« Distributed operating system:
— Access to remote resources similar to local

— Data/computation migration under control of
0Ss
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Data Migration

* Whole files (automated ftp): e.g., AFS first
version

* On-demand (demand paging): e.g., NFS, SMB,
AFS newer versions
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Computation Migration

* RPC
* Messages (more concurrency)

11/21/2013 CSC 2/456 5

Process Migration

» Rationale
— Load balancing
— Computation speedup
— Hardware preference
— Software preference
— Data access

+ Either automated (transparent) or user specifies
how the process should migrate
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Distributed File System

* One in which
— clients,
— servers (file servers/service software)), and

— storage devices (potentially multiple and
independent)

are dispersed among the machines of a distributed
system and requires networked/messaging activity
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Naming and Transparency

* Possible schemes
— Host:local-name
— Attach remote directories (mount: NFS)
— Single global name structure (AFS)

 Location transparency vs. location
independence?
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Caching and Coherence

* Remote-service mechanism
— Stateful vs. stateless

» Caching and coherence
— Caching granularity

— Cache update policy (write through vs.
delayed write)

— Client-initiated vs. server-initiated
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Reliability and File Replication

» Reliability and file replication

— Naming transparency
— Availability vs. consistency

11/21/2013 CSC 2/456 10

NFS (Network File System)

+ Deals with heterogeneity using RPC/XDR
» Stateless — no open and close of files
* Interface transparent to user via VFS
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The Andrew File System (AFS)

Unified namespace (one /afs for everybody)
One read-write copy

Protection using access control lists (ACLS)
Security using Kerberos 5 authentication
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AFS: Namespace

* Managed by dedicated servers called “Vice”

* Local (root file system) and shared namespace
with mounting similar to NFS

* Files partitioned into volumes

— typically files of a single client

— Possible migration and replication of volumes
* Clients run “Virtue” protocol
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AFS: Security and Protection

* Security

— Connection-based communication based on
RPC

— Encrypted

» Protection

— Directories have access control lists
< Allowed users or users not allowed

— Regular UNIX bits for file protection
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AFS: Caching and Coherence

» Caching of entire files
— Callback mechanism to eliminate cached
copies
— One read-write copy
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Distributed File Systems Issues

* Naming and transparency (location transparency versus location
independence)

— Host:local-name
— Attach remote directories (mount)
— Single global name structure
* Remote file access
— Remote-service mechanism
« Stateful vs. stateless
— Caching and coherence
» Cache update policy (write through vs. delayed write)
« Client-initiated vs. server-initiated
» Reliability and file replication
— Naming transparency
— Availability vs. consistency
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Distributed File Systems:
Issues of Scale
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» Component failures are normal

Google File System - Motivation

Fault tolerance and automatic recovery are needed
» Huge files are common (Multi GB)
Revisited I/0O and block size assumptions
Record appends are prevalent than random writes
Appending is the focus of performance optimization and
atomicity guarantees
Co-designing applications and the file-system API for
flexibility
Relaxed consistency model
Atomic append

»
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What is GPFS (1/2)

» A parallel, shared-disk file system for cluster computers

» Developed by IBM since 1993

» Available on AIX, linux and MS Windows Server 2003.

» Used on 6 of the 10 most powerful supercomputers in the world
Extreme scalability!!
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What is GPFS (2/2)
» Extreme scalability from its shared-disk architecture
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GPFS vs. GFS

GFS: Single Master + Multiply trunk server + Multiple client
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Application Type

Data access assumption

File Size assumption
Consistency

Synchronization

Caching
Data Unit

Fault Tolerance
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Large, distributed
data-intensive

Large streaming r/w
Mainly record appends

Usually huge
Relaxed

Centralized Management

Not needed
Chunk (64MB)

Constant monitoring
Fast recovery
Replication
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Supercomputing
other...

None

None

Distributed locking +
Centralized Management
Needed

Block( typically 256KB)

Logging & recovery
Support of RAID
Replication
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