
Operating Systems 10/20/2010

CSC 256/456 – Fall 2010 1

10/20/2010 CSC 2/456 1

I/O Systems

CS 256/456

Dept. of Computer Science, University

of Rochester

10/20/2010 CSC 2/456 2

I/O Device Controllers

• I/O devices have both mechanical component &
electronic component

• The electronic component is the device controller

– It contains control logic, command registers, status
registers, and on-board buffer space

10/20/2010 CSC 2/456 3

I/O Ports & Memory-Mapped I/O

I/O methods:
• Separate I/O and

memory space; special
I/O commands
(IN/OUT)

• Memory-mapped I/O

Issues with them:
• Convenience/efficiency when using high-level language;
• Protection mechanisms;
• Special data access schemes: TEST
• Data caching

10/20/2010 CSC 2/456 4

Direct Memory Access (DMA)

• Are the addresses CPU sends to the DMA controller virtual or
physical addresses?

• Can the disk controller directly read data into the main memory
(bypassing the controller buffer)?

Operating Systems 10/20/2010

CSC 256/456 – Fall 2010 2

10/20/2010 CSC 2/456 5

How is I/O accomplished?

• Polling-based

– CPU spins and polls the I/O until it completes

• Periodic polling

– Continuous polling consumes too much CPU

– Instead, we poll periodically - saving CPU overhead,
may not react immediately to hardware events

• Interrupt-driven

– CPU initiates I/O and then does something else;
gets notified when the I/O is done (interrupts)

10/20/2010 CSC 2/456 6

Interrupt Handlers
1. Save registers of the old process

2. Set up context for interrupt service procedure (switch from the

user space to kernel space: MMU, stack, …)
3. Run service procedure; when safe, re-enable interrupts

4. Run scheduler to choose the new process to run next
5. Set up context (MMU, registers) for process to run next
6. Start running the new process

How much cost is it? Is it a big deal?

For Gigabit Ethernet, each packet arrives once every 12us.

10/20/2010 CSC 2/456 7

Interrupt Vectors

• Intel Pentium processor event-vector table

0: divide by zero

6: invalid opcode

11: segment not present

12: stack fault

14: page fault

…31: non-maskable

32-255: maskable interrupts

10/20/2010 CSC 2/456 8

I/O Software Layers

• Device-dependent OS I/O software; directly interacts with
controller hardware

• Interface to upper-layer OS code is standardized

Operating Systems 10/20/2010

CSC 256/456 – Fall 2010 3

10/20/2010 CSC 2/456 9

Device Driver Reliability

• Device driver is the device-specific part of the kernel-
space I/O software; It also includes interrupt handlers

• Device drivers must run in kernel mode
 ⇒ The crash of a device driver typically brings down the

whole system
• Device drivers are probably the buggiest part of the OS

• How to make the system more reliable by isolating the

faults of device drivers?

– Run most of the device driver code at user
level

– Restrict and limit device driver operations in
the kernel

10/20/2010 CSC 2/456 10

High-level I/O Software

• Device independence

– reuse software as much as possible across different
types of devices

• Buffering

– data coming off a device is stored in intermediate
buffer

– access speed/granularity matching with I/O
devices

• caching

• speculative I/O

10/20/2010 CSC 2/456 11

I/O System Layers
Application

 Program

Device Controller

Device

S
o

ft
w

ar
e

in
 t

h
e

m
ac

h
in

e

Device driver

Device driver
• Software Program to manage device

controller

• System software (part of OS)
High-level OS

software

Device controller
• Contains control logic, command

registers, status registers, and on-

board buffer space

• Firmware/hardware
10/20/2010 CSC 2/456 12

Disk Drive – Mechanical Parts

Track

 Multi-surface Disk Disk Surface Cylinders

Cylinder

 (set of tracks)

Operating Systems 10/20/2010

CSC 256/456 – Fall 2010 4

10/20/2010 CSC 2/456 13

Disk Structure

• Disk drives are addressed as large 1-
dimensional arrays of logical blocks,
where the logical block is the smallest
unit of transfer.

• The 1-dimensional array of logical blocks
is mapped into the sectors of the disk
sequentially.

– Sector 0 is the first sector of the
first track on the outermost
cylinder.

– Mapping proceeds in order through
that track, then the rest of the
tracks in that cylinder, and then
through the rest of the cylinders
from outermost to innermost.

Cylinder

 (set of tracks)

10/20/2010 CSC 2/456 14

Disk Performance Characteristics

• A disk operation has three
major components

– Seek – moving the heads
to the cylinder
containing the desired
sector

– Rotation – rotating the
desired sector to the
disk head

– Transfer – sequentially
moving data to or from
disk

0

2

4

6

8

10

12

Seek distance Seek time (millisecond)

0

20

40

60

Starting transfer address
Read throughput (MB/sec)

A Seagate SCSI drive
An IBM SCSI drive

S
e
e
k
 t

im
e
 (

m
ill

is
e
c
o
n
d
)

T
ra

n
s
fe

r
th

ro
u
g

h
p

u
t
(M

B
/s

e
c
)

10/20/2010 CSC 2/456 15

Disk Scheduling

• Disk scheduling – choose from outstanding disk requests when
the disk is ready for a new request

– can be done in both disk controller and the operating
system

– Disk scheduling non-preemptible

• Goals of disk scheduling

– overall efficiency – small resource consumption for
completing disk I/O workload

– fairness – prevent starvation

10/20/2010 CSC 2/456 16

FCFS (First-Come-First-Serve)

• Illustration shows the total head movement is 640.

• Starvation?

Operating Systems 10/20/2010

CSC 256/456 – Fall 2010 5

10/20/2010 CSC 2/456 17

SSTF (Shortest-Seek-Time-First)
• Selects the request with the minimum seek time from the current

head position.

• SSTF scheduling is a form of SJF scheduling.

• Illustration shows the total head movement is 236.

Starvation?

10/20/2010 CSC 2/456 18

SCAN
• The disk arm starts at one end of the disk, and moves toward the

other end, servicing requests until it gets to the other end, where
the head movement is reversed and servicing continues.

• Sometimes called the elevator algorithm.

• Illustration shows the total head movement is 208.

Starvation?

10/20/2010 CSC 2/456 19

C-SCAN (Circular-SCAN)
• Provides a more uniform wait time than SCAN.

• The head moves from one end of the disk to the other. servicing
requests as it goes. When it reaches the other end, however, it
immediately returns to the beginning of the disk, without servicing
any requests on the return trip.

Starvation?

10/20/2010 CSC 2/456 20

C-LOOK
• Variation of C-SCAN

• Arm only goes as far as the last request in each direction, then
reverses direction immediately, without first going all the way to
the end of the disk.

Operating Systems 10/20/2010

CSC 256/456 – Fall 2010 6

10/20/2010 CSC 2/456 21

Deadline Scheduling in Linux
• A regular elevator-style scheduler similar to C-LOOK

• Additionally, all I/O requests are put into a FIFO queue with an
expiration time (e.g., 500ms)

• When the head request in the FIFO queue expires, it will be
executed next (even if it is not next in line according to C-LOOK).

• A mix of performance and fairness.

10/20/2010 CSC 2/456 22

Concurrent I/O
• Consider two request handlers in a Web server

– each accesses a different stream of sequential data (a file) on disk;

– each reads a chunk (the buffer size) at a time; does a little CPU
processing; and reads the next chunk

• What happens?

A thread/process

Timeline

Disk I/O CPU or waiting for I/O

A thread/process

A thread/process

10/20/2010 CSC 2/456 23

How to Deal with It?
• Aggressive prefetching

• Anticipatory scheduling [Iyer & Druschel, SOSP 2001]

– at the completion of an I/O request, the disk scheduler will wait a
bit (despite the fact that there is other work to do), in anticipation
that a new request with strong locality will be issued; schedule
another request if no such new request appears before timeout

– included in Linux 2.6

10/20/2010 CSC 2/456 24

Exploiting Concurrency

• RAID: Redundant Arrays of Independent Disks

– RAID 0: data striping at block level, no redundancy

– RAID 1: mirrored disks (100% overhead)

– RAID 2: bit-level striping with parity bits, synchronized

writes

– RAID 3: data striping at the bit level with parity disk,

synchronized writes

– RAID 4: data striping at block level with parity disk

– RAID 5: scattered parity

– RAID 6: handles multiple disk failures

Operating Systems 10/20/2010

CSC 256/456 – Fall 2010 7

10/20/2010 CSC 2/456 25

Disk Management

• Formatting

– Header: sector number etc.

– Footer/tail: ECC codes

– Gap

– Initialize mapping from logical block number to defect-
free sectors

• Logical disk partitioning

– One or more groups of cylinders

– Sector 0: master boot record loaded by BIOS
firmware, which contains partition information

– Boot record points to boot partition

10/20/2010 CSC 2/456 26

Swap Space Management

• Part of file system?

– Requires navigating directory structure

– Disk allocation data structures

• Separate disk partition

– No file system or directory structure

– Optimize for speed rather than storage

efficiency

– When is swap space created?

10/20/2010 CSC 2/456 27

Disclaimer

• Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Andrew
S. Tanenbaum, and Gary Nutt. The slides are intended for
the sole purpose of instruction of operating systems at the
University of Rochester. All copyrighted materials belong
to their original owner(s).

