
Operating Systems 12/4/2018

CSC 256/456 1

12/4/2018 CSC 256/456 1

Multiprocessor Operating

Systems

CS 256/456

Dept. of Computer Science, University

of Rochester

12/4/2018 CSC 256/456 2

Multiprocessor Hardware
• A computer system in which two or more CPUs share full

access to the main memory

• Each CPU might have its own cache and the coherence among
multiple caches is maintained

– write operation by a CPU is visible to all other CPUs

– writes to the same location is seen in the same order by
all CPUs (also called write serialization)

– bus snooping and cache invalidation

… … …
Cache

CPU

Cache

CPU

Cache

CPU

Memory

Memory bus

12/4/2018 CSC 256/456 3

Multiprocessor Applications

• Multiprogramming

– Multiple regular applications running concurrently

• Concurrent servers

– Web servers, … …

• Parallel programs

– Utilizing multiple processors to complete one task
(parallel matrix multiplication, Gaussian elimination)

– Strong synchronization

x =A B C

12/4/2018 CSC 256/456 4

Single-processor OS vs. Multiprocessor

OS
• Single-processor OS

– easier to support kernel synchronization
• coarse-grained locking vs. fine-grain locking

• disabling interrupts to prevent concurrent executions

– easier to perform scheduling
• which to run, not where to run

• Multiprocessor OS

– evolution of OS structure

– synchronization

– scheduling

Operating Systems 12/4/2018

CSC 256/456 2

12/4/2018 CSC 256/456 5

Multiprocessor OS

• Each CPU has its own operating system

– quick to port from a single-processor OS

• Disadvantages

– difficult to share things (processing cycles, memory,
buffer cache)

Bus

12/4/2018 CSC 256/456 6

Multiprocessor OS – Master/Slave

Bus

• All operating system functionality goes to one CPU

– no multiprocessor concurrency in the kernel

• Disadvantage

– OS CPU consumption may be large so the OS CPU
becomes the bottleneck (especially in a machine with
many CPUs)

12/4/2018 CSC 256/456 7

Multiprocessor OS – Shared OS

• A single OS instance may run on all CPUs

• The OS itself must handle multiprocessor synchronization

– multiple OS instances from multiple CPUs may access
shared data structure

Bus

12/4/2018 CSC 256/456 8

Preemptive Scheduling

• Use timer interrupts or signals to trigger involuntary
yields

• Protect scheduler data structures by locking ready list,
disabling/reenabling prior to/after rescheduling

yield:

disable_signals

enqueue(ready_list, current)

reschedule

re-enable_signals

Operating Systems 12/4/2018

CSC 256/456 3

12/4/2018 CSC 256/456 9

Synchronization (Fine/Coarse-Grain

Locking)

• Fine-grain locking – lock only what is necessary for critical
section

• Coarse-grain locking – locking large piece of code, much of
which is unnecessary
– simplicity, robustness
– prevent simultaneous execution

Simultaneous execution is not possible on uniprocessor
anyway

12/4/2018 CSC 256/456 10

Anderson et al. 1989 (IEEE TOCS)

• Raises issues of

– Locality (per-processor data structures)

– Granularity of scheduling tasks

– Lock overhead

– Tradeoff between throughput and latency

• Large critical sections are good for best-case

latency (low locking overhead) but bad for

throughput (low parallelism)

12/4/2018 CSC 256/456 11

Performance Measures

• Latency

– Cost of thread management under the best

case assumption of no contention for locks

• Throughput

– Rate at which threads can be created, started,

and finished when there is contention

12/4/2018 CSC 256/456 12

Optimizations

• Allocate stacks lazily

• Store deallocated control blocks and stacks in

free lists

• Create per-processor ready lists

• Create local free lists for locality

• Queue of idle processors (in addition to queue of

waiting threads)

Operating Systems 12/4/2018

CSC 256/456 4

12/4/2018 CSC 256/456 13

Ready List Management

• Single lock for all data structures

• Multiple locks, one per data structure

• Local freelists for control blocks and stacks,
single shared locked ready list

• Queue of idle processors with preallocated
control block and stack waiting for work

• Local ready list per processor, each with its own
lock

12/4/2018 CSC 256/456 14

Multiprocessor Scheduling
• Timesharing

– similar to uni-processor scheduling – one queue of
ready tasks (protected by synchronization), a task
is dequeued and executed when a processor is
available

• Space sharing
• cache affinity

– affinity-based scheduling – try to run each process
on the processor that it last ran on

• cache sharing and synchronization of parallel/concurrent
applications
– gang/cohort scheduling – utilize all CPUs for one

parallel/concurrent application at a time
CPU 0

CPU 1

web server parallel Gaussian
elimination

client/server
game (civ)

12/4/2018 CSC 256/456 15

SMP-CMP-SMT Multiprocessor

Image from http://www.eecg.toronto.edu/~tamda/papers/threadclustering.pdf

The Performance Transparency

Challenge

• Resource sharing

– Functional units, caches, on- and off-chip
interconnects, memory

• Non-uniform access latencies

Modern multicore systems…

Source: http://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested/5

10s to 100s of hardware contexts

Operating Systems 12/4/2018

CSC 256/456 5

17

Operating System Level Resource

Management To Date

• Capitalistic - generation of more requests results

in more resource usage

– Performance: resource contention can result

in significantly reduced overall performance

– Fairness: equal time slice does not

necessarily guarantee equal progress

– Sharing oblivious: extraneous communication

due to poor placement

Multi-Core Cache Challenges

• Hardware manages cache at the grain of cache

lines.

– single program: data with different locality are mixed

together

– shared cache: uncontrolled sharing threads

– compete for space -> interference

• Using OS as an auxiliary to manage cache

– high-level knowledge of program

– running state of the entire system

– how? page coloring

Address Mapping in Cache

• physical memory address and cache

– cache size = line size * way size * # of set

– 256KB, 16-way, 32B line size L2 cache: 512

sets (9 bits to index)

32 bits addr. set index line offset

5 bits9 bits

L2 Cache

cache set

Way-1 Way-16…………

•color:

– cache: a group of cache sets

– memory: a group of physical pages

– (page N, N+4, N+8, …)

•page color:

– data belonging to a page color
can only be cached by cache
sets with same color

physical addr. page offset (12bits)

5 bits line off.9 bits set index

physical page #

physical

mem pages

color index (2 bits-> 4 colors)

L2 Cache

What is a Page Color?

Operating Systems 12/4/2018

CSC 256/456 6

Software cache partitioning by

page coloring – under OS control

[EuroSys 2009]

OS and Page Coloring

• What is the role of the OS?

– control the mapping between virtual memory

pages and physical pages via page table

physical addr. page offset physical page #

virtual addr. page offset virtual page #

page table under OS

control

OS and Page Coloring

• Color a page: map a virtual page to a physical

page with a particular color (lower bits of page #)

• Re-color a page: change the color at runtime

– flush TLB, copy page data, modify page table

– Incurs significant overhead (function of amount of

data moved)

physical pages

virtual addr. page offset virtual page number

Intel’s Hardware-Supported Cache

Partitioning (2016)

• Intel Cache Allocation Technology – partition by

ways (rather than sets) by writing to registers to

specify the range of ways each core can access

12/4/2018 CSC 2/456 24

App1 partition
App2 partition App3 partition

Operating Systems 12/4/2018

CSC 256/456 7

Big Picture

A B DC

Select which applications run

together

X………

…..

Control resource usage of co-running

applications

Resource-aware scheduling

Page coloring or Hardware throttling

Hardware Execution Throttling
[Usenix 2009]

• Instead of directly controlling cache resource allocation,
throttle the execution speed of application that
overuses resource

• Available throttling knobs

– Duty-cycle modulation

– Frequency/voltage scaling

– Cache prefetchers

New Mechanism:

Hardware Execution Throttling [Usenix’09]

• Throttle the execution speed of app that overuses cache

– Duty cycle modulation

• CPU works only in duty cycles and stalls in non-duty cycles

• Different from Dynamic Voltage Frequency Scaling

– Per-core vs. per-processor control

– Thermal vs. power management

– Enable/disable cache prefetchers

• L1 prefetchers

– IP: keeps track of instruction pointer for load history

– DCU: when detecting multiple loads from the same line within a time limit,

prefetches the next line

• L2 prefetchers

– Adjacent line: Prefetches the adjacent line of required data

– Stream: looks at streams of data for regular patterns

Comparing Hardware Execution

Throttling to Page Coloring

• Kernel code modification complexity

– Code length: 40 lines in a single file, as a reference our

page coloring implementation takes 700+ lines of code

crossing 10+ files

• Runtime overhead of configuration

– Less than 1 microseconds, as a reference re-coloring a

page takes 3 microseconds

Operating Systems 12/4/2018

CSC 256/456 8

Existing Mechanism(II):

Scheduling Quantum Adjustment

• Shorten the time slice of app that overuses cache

• May let core idle if there is no other active thread

available

Thread B

Thread A idle

Thread B

Thread A idle

Thread B

Thread A idleCore 0

Core 1

time

Drawback of Scheduling Quantum

AdjustmentCoarse-grained control at scheduling quantum granularity may

result in fluctuating service delays for individual transactions

Comparison of Hardware Execution

Throttling to other two mechanisms

• Comparison to page coloring

– Little complexity to kernel
• Code length: 40 lines in a single file, as a reference our page coloring implementation

takes 700+ lines of code crossing 10+ files

– Lightweight to configure
• Read plus write register: duty-cycle 265 + 350 cycles, prefetcher 298 + 2065 cycles

• Less than 1 microseconds, as a reference re-coloring a page takes 3 microseconds

• Comparison to scheduling quantum adjustment

– More fine-grained controlling

Thread B

Core 0

Core 1

Thread A idle

Quantum adjustment
Hardware execution throttling

time

Comparison of Hardware Execution

Throttling to other two mechanisms

• Comparison to page coloring

– Little complexity to kernel
• Code length: 40 lines in a single file, as a reference our page coloring implementation

takes 700+ lines of code crossing 10+ files

– Lightweight to configure
• Read plus write register: duty-cycle 265 + 350 cycles, prefetcher 298 + 2065 cycles

• Less than 1 microseconds, as a reference re-coloring a page takes 3 microseconds

• Comparison to scheduling quantum adjustment

– More fine-grained controlling

Thread B

Core 0

Core 1

Thread A idle

Quantum adjustment
Hardware execution throttling

time

Operating Systems 12/4/2018

CSC 256/456 9

Policies for Hardware Throttling-

Enabled Multicore Management

• User-defined service level agreements (SLAs)

– Proportional progress among competing threads

• Unfairness metric: coefficient of variation of threads’ performance

– Quality of service guarantee for high-priority application(s)

• Key challenge

– Throttling configuration space grows exponentially as

the number of cores increases

– Quickly determining optimal or close to optimal

throttling configurations is challenging

TEMM: A Flexible Framework for

Throttling-Enabled Multicore

Management [ICPP’12]
• Customizable performance estimation model

• Reference configuration set and linear approximation

• Currently incorporates duty cycle modulation and

frequency/voltage scaling

• Iterative refinement

• Prediction accuracy gets improved over time as more

configurations are added into reference set

