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Multiprocessor Hardware
• A computer system in which two or more CPUs share full 

access to the main memory

• Each CPU might have its own cache and the coherence among 
multiple caches is maintained

– write operation by a CPU is visible to all other CPUs

– writes to the same location is seen in the same order by 
all CPUs (also called write serialization)

– bus snooping and cache invalidation

… … …
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Multiprocessor Applications

• Multiprogramming

– Multiple regular applications running concurrently

• Concurrent servers

– Web servers, … …

• Parallel programs

– Utilizing multiple processors to complete one task 
(parallel matrix multiplication, Gaussian elimination)

– Strong synchronization

x =A B C
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Single-processor OS vs. Multiprocessor 

OS
• Single-processor OS

– easier to support kernel synchronization
• coarse-grained locking vs. fine-grain locking

• disabling interrupts to prevent concurrent executions

– easier to perform scheduling
• which to run, not where to run

• Multiprocessor OS

– evolution of OS structure

– synchronization

– scheduling
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Multiprocessor OS

• Each CPU has its own operating system

– quick to port from a single-processor OS

• Disadvantages

– difficult to share things (processing cycles, memory, 
buffer cache)

Bus
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Multiprocessor OS – Master/Slave

Bus

• All operating system functionality goes to one CPU

– no multiprocessor concurrency in the kernel

• Disadvantage

– OS CPU consumption may be large so the OS CPU 
becomes the bottleneck (especially in a machine with 
many CPUs)
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Multiprocessor OS – Shared OS

• A single OS instance may run on all CPUs

• The OS itself must handle multiprocessor synchronization

– multiple OS instances from multiple CPUs may access 
shared data structure

Bus
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Preemptive Scheduling

• Use timer interrupts or signals to trigger involuntary 
yields

• Protect scheduler data structures by locking ready list, 
disabling/reenabling prior to/after rescheduling

yield: 

disable_signals 

enqueue(ready_list, current) 

reschedule 

re-enable_signals 
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Synchronization (Fine/Coarse-Grain 

Locking)

• Fine-grain locking – lock only what is necessary for critical 
section

• Coarse-grain locking – locking large piece of code, much of 
which is unnecessary
– simplicity, robustness
– prevent simultaneous execution

Simultaneous execution is not possible on uniprocessor 
anyway
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Anderson et al. 1989 (IEEE TOCS)

• Raises issues of 

– Locality (per-processor data structures)

– Granularity of scheduling tasks

– Lock overhead

– Tradeoff between throughput and latency

• Large critical sections are good for best-case 

latency (low locking overhead) but bad for 

throughput (low parallelism)
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Performance Measures

• Latency

– Cost of thread management under the best 

case assumption of no contention for locks

• Throughput 

– Rate at which threads can be created, started, 

and finished when there is contention
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Optimizations

• Allocate stacks lazily

• Store deallocated control blocks and stacks in 

free lists

• Create per-processor ready lists

• Create local free lists for locality

• Queue of idle processors (in addition to queue of 

waiting threads)
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Ready List Management

• Single lock for all data structures

• Multiple locks, one per data structure

• Local freelists for control blocks and stacks, 
single shared locked ready list

• Queue of idle processors with preallocated 
control block and stack waiting for work

• Local ready list per processor, each with its own 
lock
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Multiprocessor Scheduling
• Timesharing 

– similar to uni-processor scheduling – one queue of 
ready tasks (protected by synchronization), a task 
is dequeued and executed when a processor is 
available

• Space sharing
• cache affinity 

– affinity-based scheduling – try to run each process 
on the processor that it last ran on

• cache sharing and synchronization of parallel/concurrent 
applications
– gang/cohort scheduling – utilize all CPUs for one 

parallel/concurrent application at a time
CPU 0

CPU 1

web server parallel Gaussian
elimination

client/server
game (civ)
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SMP-CMP-SMT Multiprocessor

Image from http://www.eecg.toronto.edu/~tamda/papers/threadclustering.pdf 

The Performance Transparency 

Challenge

• Resource sharing

– Functional units, caches, on- and off-chip 
interconnects, memory

• Non-uniform access latencies

Modern multicore systems…

Source: http://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested/5

10s to 100s of hardware contexts
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Operating System Level Resource 

Management To Date

• Capitalistic - generation of more requests results 

in more resource usage

– Performance: resource contention can result 

in significantly reduced overall performance

– Fairness: equal time slice does not 

necessarily guarantee equal progress

– Sharing oblivious: extraneous communication 

due to poor placement

Multi-Core Cache Challenges

• Hardware manages cache at the grain of cache 

lines.

– single program: data with different locality are mixed 

together 

– shared cache: uncontrolled sharing threads

– compete for space -> interference

• Using OS as an auxiliary to manage cache

– high-level knowledge of program

– running state of the entire system

– how? page coloring

Address Mapping in Cache

• physical memory address and cache

– cache size = line size * way size * # of set

– 256KB, 16-way, 32B line size L2 cache: 512 

sets (9 bits to index)

32 bits addr. set index line offset

5 bits9 bits

L2 Cache

cache set

Way-1 Way-16…………

•color: 

– cache: a group of cache sets 

– memory: a group of physical pages 

– (page N, N+4, N+8, … )

•page color:

– data belonging to a page color
can only be cached by cache 
sets with same color

physical addr. page offset (12bits)

5 bits line off.9 bits set index

physical page #

physical 

mem pages

color index (2 bits-> 4 colors)

L2 Cache

What is a Page Color?
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Software cache partitioning by 

page coloring – under OS control 

[EuroSys 2009]

OS and Page Coloring

• What is the role of the OS?

– control the mapping between virtual memory 

pages and physical pages via page table

physical addr. page offset physical page #

virtual addr. page offset virtual page #

page table under OS 

control

OS and Page Coloring

• Color a page: map a virtual page to a physical 

page with a particular color (lower bits of page #)

• Re-color a page: change the color at runtime

– flush TLB, copy page data, modify page table

– Incurs significant overhead (function of amount of 

data moved)

physical pages

virtual addr. page offset virtual page number

Intel’s Hardware-Supported Cache 

Partitioning (2016)

• Intel Cache Allocation Technology – partition by 

ways (rather than sets) by writing to registers to 

specify the range of ways each core can access
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App1 partition
App2 partition App3 partition
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Big Picture

A B DC

Select which applications run 

together

X………

…..

Control resource usage of co-running 

applications

Resource-aware scheduling

Page coloring or  Hardware throttling

Hardware Execution Throttling 
[Usenix 2009]

• Instead of directly controlling cache resource allocation, 
throttle the execution speed of application that  
overuses resource

• Available throttling knobs

– Duty-cycle modulation

– Frequency/voltage scaling

– Cache prefetchers

New Mechanism:

Hardware Execution Throttling [Usenix’09]

• Throttle the execution speed of app that  overuses cache

– Duty cycle modulation

• CPU works only in duty cycles and stalls in non-duty cycles 

• Different from Dynamic Voltage Frequency Scaling

– Per-core vs. per-processor control

– Thermal vs. power management

– Enable/disable cache prefetchers

• L1 prefetchers  

– IP: keeps track of instruction pointer for load history

– DCU: when detecting multiple loads from the same line within a time limit, 

prefetches the next line

• L2 prefetchers  

– Adjacent line: Prefetches the adjacent line of required data

– Stream: looks at streams of data for regular patterns

Comparing Hardware Execution 

Throttling to Page Coloring

• Kernel code modification complexity

– Code length: 40 lines in a single file, as a reference our 

page coloring implementation takes 700+ lines of code 

crossing 10+ files

• Runtime overhead of configuration

– Less than 1 microseconds, as a reference re-coloring a 

page takes 3 microseconds
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Existing Mechanism(II):

Scheduling Quantum Adjustment

• Shorten the time slice of app that overuses cache 

• May let core idle if there is no other active thread 

available

Thread B

Thread A idle

Thread B

Thread A idle

Thread B

Thread A idleCore 0

Core 1

time

Drawback of Scheduling Quantum 

AdjustmentCoarse-grained control at scheduling quantum granularity may 

result in fluctuating service delays for individual transactions

Comparison of Hardware Execution 

Throttling to other two mechanisms

• Comparison to page coloring

– Little complexity to kernel
• Code length: 40 lines in a single file, as a reference our page coloring implementation 

takes 700+ lines of code crossing 10+ files

– Lightweight to configure
• Read plus write register: duty-cycle 265 + 350 cycles, prefetcher 298 + 2065 cycles

• Less than 1 microseconds, as a reference re-coloring a page takes 3 microseconds

• Comparison to scheduling quantum adjustment 

– More fine-grained controlling 

Thread B

Core 0

Core 1

Thread A idle

Quantum adjustment
Hardware execution throttling

time

Comparison of Hardware Execution 

Throttling to other two mechanisms

• Comparison to page coloring

– Little complexity to kernel
• Code length: 40 lines in a single file, as a reference our page coloring implementation 

takes 700+ lines of code crossing 10+ files

– Lightweight to configure
• Read plus write register: duty-cycle 265 + 350 cycles, prefetcher 298 + 2065 cycles

• Less than 1 microseconds, as a reference re-coloring a page takes 3 microseconds

• Comparison to scheduling quantum adjustment 

– More fine-grained controlling 

Thread B

Core 0

Core 1

Thread A idle

Quantum adjustment
Hardware execution throttling

time
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Policies for Hardware Throttling-

Enabled Multicore Management

• User-defined service level agreements (SLAs)

– Proportional progress among competing threads

• Unfairness metric: coefficient of variation of threads’ performance

– Quality of service guarantee for high-priority application(s)

• Key challenge

– Throttling configuration space grows exponentially as 

the number of cores increases

– Quickly determining optimal or close to optimal 

throttling configurations is challenging

TEMM: A Flexible Framework for 

Throttling-Enabled Multicore 

Management [ICPP’12]
• Customizable performance estimation model 

• Reference configuration set and linear approximation

• Currently incorporates duty cycle modulation and 

frequency/voltage scaling

• Iterative refinement

• Prediction accuracy gets improved over time as more 

configurations are added into reference set 


