Operating System Structure

CS 256/456
Dept. of Computer Science, University of Rochester

Operation System Architectures

- Monolithic architecture
- Microkernel architecture
- Layered architecture
- Virtual machines

OS Architecture: Monolithic Structure

Advantage: compact
Disadvantage: poor modularity, reliability (everything can access/modify everything)

Libraries	Commands	Application Programs	Application Programs

Device Driver | Device Driver | Monolithic Kernel Module

- Process Management
- Memory Management
- File Management
- Device Mgmt Infrastructure

Trap Table

Most modern OSes fall into this category!

Microkernel System Architecture

- Microkernel architecture:
 - Moves as much from the kernel into "user" space (still protected from normal users).
 - Communication takes place between user modules using message passing.
- What must be in the kernel and what can be in user space?
 - Mechanisms determine how to do something.
 - Policies decide what will be done.
- Benefits:
 - More reliable (less code is running in kernel mode)
 - More secure (less code is running in kernel mode)
- Disadvantage?
Layered Structure

- Layered structure
 - The operating system is divided into a number of layers (levels),
 each built on top of lower layers.
 - The bottom layer (layer 0), is the hardware.
 - The highest (layer N) is the user interface.
 - Decreased privileges for higher layers.
- Benefits:
 - more reliable
 - more secure
 - more flexibility, easier to extend
- Disadvantage?
 - Weak integration results in performance penalty (similar to the microkernel structure).

Modern UNIX/Linux: Modules

- Object-oriented programming techniques
 - Kernel has a set of core components
 - Links in additional services during boot time or during run time
 - Dynamically loadable modules
 - E.g., scheduling classes, file systems, executable formats, device and bus drivers
 - Each module has defined, protected interfaces
 - Any module can still call any other module (no need for message passing) — flexible, efficient

Virtual Machines

- Virtual machine architecture
 - Virtualization: A piece of software that provides an interface identical to the underlying bare hardware.
 - the upper-layer software has the illusion of running directly on hardware
 - the virtualization software is called virtual machine monitor
 - Multiplexing: It may provide several virtualized machines on top of a single piece of hardware.
 - resources of physical computer are shared among the virtual machines
 - each VM has the illusion of owning a complete machine
- Trust and privilege
 - the VM monitor does not trust VMs
 - only VM monitor runs in full privilege
- Compared to an operating system
 - VM monitor is a resource manager, but not an extended machine

Virtual Machine Architecture
Exokernel [Engler et al. SOSP1995]

- Give each user a clone of the actual machine, but with a subset of resources
- Each user can run its own operating system
- Exokernel running in kernel mode
 - Allocate resources
 - Enforce allocation
- Advantages –
 - Separates multiprogramming from user operating system code (interface)
 - No remapping needed