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Synchronization in Practice 

• User program synchronization  
– for threads 
– for processes 

 
• OS kernel synchronization 
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User Program Synchronization for 

Processes 

• Processes naturally do not share the same address space 

 

• Process communication and synchronization: 

– semaphore 

– shared memory and memory-based synchronization (spinlocks) 

– pipes 
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User Program Synchronization for 

Threads 
• All threads share the same address space 

 
• When only need to protect a short critical section (busy waiting 

is OK) 
– software/hardware spin locks  
– still has the risk of context switch in the middle of critical 

section 
 

• For complex synchronization (busy waiting is not OK) 
– semaphore, mutex lock, condition variable, …  
– may need kernel help 

 

• In pthreads 
– mutex lock and condition variable 
– condition variable must be used together with a mutex lock 
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Synchronization Primitives in 

Pthreads • Mutex lock 

– pthread_mutex_init 

– pthread_mutex_destroy 

– pthread_mutex_lock 

– pthread_mutex_unlock 
 

• Condition variable (used in conjunction with a mutex lock) 

– pthread_cond_init 

– pthread_cond_destroy 

– pthread_cond_wait 

– pthread_cond_signal 

– pthread_cond_broadcast 
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Mutex Locks: Creation and 

Destruction 

 pthread_mutex_init( 

 pthread_mutex_t * mutex, 

 const pthread_mutex_attr *attr); 

• Creates a new mutex lock 

pthread_mutex_destroy( 

 pthread_mutex_t *mutex); 

• Destroys the mutex specified by mutex 
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Mutex Locks: Lock 

 pthread_mutex_lock( 

 pthread_mutex_t *mutex) 

• Tries to acquire the lock specified by mutex. 

• If mutex is already locked, then calling thread 

blocks until mutex is unlocked. 
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Mutex Locks: UnLock 

 pthread_mutex_unlock( 

 pthread_mutex_t *mutex); 

• If calling thread has mutex currently locked, this 

will unlock the mutex. 

• If other threads are blocked waiting on this 

mutex, one will unblock and acquire mutex 

• Which one is determined by the scheduler 
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Condition variables: Creation and 

Destruction 

 pthread_cond_init( 

 pthread_cond_t *cond, 

 pthread_cond_attr *attr) 

• Creates a new condition variable cond 

   pthread_cond_destroy( 

 pthread_cond_t *cond) 

• Destroys the condition variable cond. 
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Condition Variables: Wait 

 pthread_cond_wait( 

 pthread_cond_t *cond, 

 pthread_mutex_t *mutex) 

• Blocks the calling thread, waiting on cond 

• Unlocks the mutex 

• Re-acquires the mutex when unblocked 
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Condition Variables: Signal 

 pthread_cond_signal( 

 pthread_cond_t *cond) 

• Unblocks one thread waiting on cond. 

• Which one is determined by scheduler. 

• If no thread waiting, then signal is a no-op. 

10/1/2012 CSC 2/456 62 

Condition Variables: Broadcast 

 pthread_cond_broadcast( 

 pthread_cond_t *cond) 

• Unblocks all threads waiting on cond. 

• If no thread waiting, then broadcast is a no-op. 
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Use of Condition Variables 

• IMPORTANT NOTE: A signal is “forgotten” if 

there is no corresponding wait that has already 

occurred 

• Use semaphores (or construct a semaphore) if 

you want the signal to be remembered 
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TSP (Traveling Salesman) 

• Goal: 

– given a list of cities, a matrix of distances 

between them, and a starting city, 

– find the shortest tour in which all cities are 

visited exactly once. 

• Example of an NP-hard search problem. 

• Algorithm: branch-and-bound. 
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Branching 

• Initialization:  

– go from starting city to each of remaining 
cities 

– put resulting partial path into priority queue, 
ordered by its current length. 

• Further (repeatedly): 

– take head element out of priority queue, 

– expand by each one of remaining cities, 

– put resulting partial path into priority queue. 
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Finding the Solution 

• Eventually, a complete path will be found. 

• Remember its length as the current shortest 

path. 

• Every time a complete path is found, check if we 

need to update current best path. 

• When priority queue becomes empty, best path 

is found. 
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Using a Simple Bound 

• Once a complete path is found, we have a lower 

bound on the length of shortest path 

• No use in exploring partial path that is already 

longer than the current lower bound 

• Better bounding methods exist … 
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Sequential TSP: Data Structures 

• Priority queue of partial paths. 

• Current best solution and its length. 

• For simplicity, we will ignore bounding. 
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Sequential TSP: Code Outline 

init_q(); init_best(); 

while( (p=de_queue()) != NULL ) { 

 for each expansion by one city { 

  q = add_city(p); 

  if( complete(q) ) { update_best(q) }; 

  else { en_queue(q) }; 

 } 

} 
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Parallel TSP: Possibilities 

• Have each process do one expansion 

• Have each process do expansion of one partial 
path 

• Have each process do expansion of multiple 
partial paths 

• Issue of granularity/performance, not an issue of 
correctness. 

• Assume: process expands one partial path. 
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Parallel TSP: First Cut (part 1) 

process i: 

while( (p=de_queue()) != NULL ) { 

 for each expansion by one city { 

  q = add_city(p); 

  if complete(q) { update_best(q) }; 

  else en_queue(q); 

 } 

} 
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Parallel TSP: First cut (part 2) 

• In de_queue: wait if q is empty 

• In en_queue: signal that q is no longer empty 
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Parallel TSP 

process i: 

while( (p=de_queue()) != NULL ) { 

 for each expansion by one city { 

  q = add_city(p); 

  if complete(q) { update_best(q) }; 

  else en_queue(q); 

 } 

} 
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Parallel TSP: Critical Sections 

• All concurrently accessed shared data must be 

protected by critical section 

• Update_best must be protected by a critical 

section 

• En_queue and de_queue must be protected by 

the same critical section 
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Termination condition 

• How do we know when we are done? 

• All processes are waiting inside de_queue. 

• Count the number of waiting processes before 

waiting. 

• If equal to total number of processes, we are 

done. 
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Parallel TSP: Mutual Exclusion 

en_queue() / de_queue() { 

 pthread_mutex_lock(&queue); 

 …; 

 pthread_mutex_unlock(&queue); 

} 

update_best() { 

 pthread_mutex_lock(&best); 

 …; 

 pthread_mutex_unlock(&best); 

} 
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Parallel TSP: Condition Synchronization 

de_queue() { 
    pthread_mutex_lock(&queue); 
 while( (q is empty) and (not done) ) { 
  waiting++; 
  if( waiting == p ) { 
   done = true; 
   pthread_cond_broadcast(&empty); 
  } 
  else { 
   pthread_cond_wait(&empty, &queue); 
   waiting--; 
  } 
 } 
 if( done ) 
  return null; 
 else 
  remove and return head of the queue; 
    pthread_mutex_unlock(&queue); 
} 

SYNCHRONIZATION IN THE 

LINUX KERNEL  
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Examples of OS Kernel 

Synchronization 

• Two processes making system calls to read/write on the same 
file, leading to possible race condition on the file system data 
structures in OS 
 
 

• Interrupt handlers put I/O data into a buffer queue that 
might be retrieved by application-initiated I/O system calls 
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OS Kernel Structure for 

Synchronization • OS is divided into two parts: 
– upper part (serving application requests): system call, exception 
– lower part (serving hardware device requests): interrupt handling 

• Upper part runs in process/thread context 
– resource accounting to corresponding process/thread 
– running on a kernel stack usually associated with the 

corresponding process/thread control block 

• Lower part runs in a separate interrupt context 
– resource accounting to who? 
– running in a separate (often dedicated) kernel interrupt stack 

• Blocking behaviors: 
– Upper part may block (yield CPU), interleave with others 
– Lower part does not block, must run atomically (one by one) – 

interrupt handlers typically run with other interrupts disabled  

• Preemption/priority: 
– A lower part interrupt handler may preempt an upper part 

system call processing, but not vice versa 
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OS Kernel Synchronization 
• Available mechanisms: 

– disabling interrupts 
– spin_lock (busy waiting lock) 
– blocking synchronization (mutex lock, semaphore, …) 

 
• Synchronization between upper part kernel “threads” 

– typically blocking synchronization 
– Spin lock if critical section short (only useful on multiprocessor) 

• Synchronization between an upper part kernel “thread” and a 
lower part interrupt handler: 
– if blocking synchronization: block only at upper part, never lower 

part (possible in semaphore) 
– Spin lock may be used (only useful on multiprocessor) 
– the upper part should disable interrupt before entering critical 

section 
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A Little More on OS Kernel 

Structure 
• Lower part interrupt handlers do not block 

– interrupt handlers typically run with other interrupts disabled 

• This can be a problem when interrupt handlers do more and more 
work 
 

• In modern OSes, interrupt handlers typically defer some work to 
later (interruptible contexts) 
– soft irqs in Linux 
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Preemptible Kernel 

• Preemptible kernel 

– One in which a process switch may occur at 

any point when a process is executing in 

kernel mode 

– Requires the re-entrant property  

• Several processes may be executing in kernel 

mode at the same time 

• Use either re-entrant functions (ones that don’t 

modify glabal variables) or thread-safe functions 
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Synchronization in Linux 

10/1/2012 CSC 256/456 85 

Per-CPU Variables 

• An array of data structures, one element per 

CPU 

• Ensure that element falls on a unique cache line 

 

• Caveats? 

– Still require disabling preemption on a single 

CPU 

– Prone to race conditions because of the 

above 
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Atomic Operations 

• Read-modify-write 

– Use specific atomic instructions or lock prefix 

on x86 

• Ensures that operations are not interleaved with 

those by other threads 

– Locally ensures that process will not get 

context switched between read and write in 

read-modify-write (single opcode) 
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Memory Barriers 

• Prevent compiler reordering (e.g., reordering for 

optimized register use) 

– Optimization barrier 

• Prevent hardware reordering 

– Memory barrier 

– Instructions that operate on I/O, or are 

“locked” (on x86 machines) 

– Writes to control registers 

– … a few others 



Operating Systems 10/1/2012 

CSC 256/456 – Fall 2012 10 

10/1/2012 CSC 256/456 88 

Spin Locks (+ R-W spinlocks) 

• Ensure that code 

executing spin lock is 

non-blocking 

• spinlock_t (uses xchgb on 

x86) 

• R-W spin locks 

– Uses an atomic 

decrement and 

subtract with multiple 

values for the lock 
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Sequence locks 

• Higher priority to writers 

• Seqlock_t consists of two fields – spinlock and an integer sequence 

• Reads – read sequence before and after 

     do { 

           seq = read_seqbegin(&seqlock); 

           … critical section … 

     } while (read_seqretry(&seqlock, seq);   

• Writes – acquire spinlock, increase sequence by 1 on entry; 
increase sequence by 1 and release spinlock on exit 

– write_seqlock() 

– write_sequnlock() 
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Read-Copy Update 

• Non-blocking form of synchronization 

• Reader reads in place 

– Data structure must be dynamically allocated and 

referenced using pointers 

– Disable preemption 

• Copy data structure to write; switch pointers  (requires 

memory barriers to ensure that data structure 

modification precedes pointer modification) 

• Old copy can be freed only after all potential readers 

have unlocked – special function to free old copy 
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Semaphores 

• struct semaphore 

– atomic_t count 

– wait (wait queue list address) 

– Sleepers (count to indicate processes are 

sleeping) 

• To be used only by functions allowed to block 

• Read/write semaphores 

• Mutexes (binary semaphores) 
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Synchronization in Linux 

Goal: Maximize concurrency 

 

• Per-CPU variables to avoid synchronization 

• Atomic variables (non-blocking) 

• Read-copy-update (non-blocking) 

• Sequence locks (writer-prioritized reader/writer locks) 

• Spin-locks – basic, r/w (blocking) 

• Semaphores (sleeping) 

• Local interrupt disabling 
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Disclaimer 

• Parts of the lecture slides contain original work from Gary 
Nutt, Andrew S. Tanenbaum, and Kai Shen. The slides are 
intended for the sole purpose of instruction of operating 
systems at the University of Rochester. All copyrighted 
materials belong to their original owner(s).  


