
Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 1

10/1/2012 CSC 2/456 52

Synchronization in Practice

• User program synchronization
– for threads
– for processes

• OS kernel synchronization

10/1/2012 CSC 2/456 53

User Program Synchronization for

Processes

• Processes naturally do not share the same address space

• Process communication and synchronization:

– semaphore

– shared memory and memory-based synchronization (spinlocks)

– pipes

10/1/2012 CSC 2/456 54

User Program Synchronization for

Threads
• All threads share the same address space

• When only need to protect a short critical section (busy waiting

is OK)
– software/hardware spin locks
– still has the risk of context switch in the middle of critical

section

• For complex synchronization (busy waiting is not OK)
– semaphore, mutex lock, condition variable, …
– may need kernel help

• In pthreads
– mutex lock and condition variable
– condition variable must be used together with a mutex lock

10/1/2012 CSC 2/456 55

Synchronization Primitives in

Pthreads • Mutex lock

– pthread_mutex_init

– pthread_mutex_destroy

– pthread_mutex_lock

– pthread_mutex_unlock

• Condition variable (used in conjunction with a mutex lock)

– pthread_cond_init

– pthread_cond_destroy

– pthread_cond_wait

– pthread_cond_signal

– pthread_cond_broadcast

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 2

10/1/2012 CSC 2/456 56

Mutex Locks: Creation and

Destruction

 pthread_mutex_init(

 pthread_mutex_t * mutex,

 const pthread_mutex_attr *attr);

• Creates a new mutex lock

pthread_mutex_destroy(

 pthread_mutex_t *mutex);

• Destroys the mutex specified by mutex

10/1/2012 CSC 2/456 57

Mutex Locks: Lock

 pthread_mutex_lock(

 pthread_mutex_t *mutex)

• Tries to acquire the lock specified by mutex.

• If mutex is already locked, then calling thread

blocks until mutex is unlocked.

10/1/2012 CSC 2/456 58

Mutex Locks: UnLock

 pthread_mutex_unlock(

 pthread_mutex_t *mutex);

• If calling thread has mutex currently locked, this

will unlock the mutex.

• If other threads are blocked waiting on this

mutex, one will unblock and acquire mutex

• Which one is determined by the scheduler

10/1/2012 CSC 2/456 59

Condition variables: Creation and

Destruction

 pthread_cond_init(

 pthread_cond_t *cond,

 pthread_cond_attr *attr)

• Creates a new condition variable cond

 pthread_cond_destroy(

 pthread_cond_t *cond)

• Destroys the condition variable cond.

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 3

10/1/2012 CSC 2/456 60

Condition Variables: Wait

 pthread_cond_wait(

 pthread_cond_t *cond,

 pthread_mutex_t *mutex)

• Blocks the calling thread, waiting on cond

• Unlocks the mutex

• Re-acquires the mutex when unblocked

10/1/2012 CSC 2/456 61

Condition Variables: Signal

 pthread_cond_signal(

 pthread_cond_t *cond)

• Unblocks one thread waiting on cond.

• Which one is determined by scheduler.

• If no thread waiting, then signal is a no-op.

10/1/2012 CSC 2/456 62

Condition Variables: Broadcast

 pthread_cond_broadcast(

 pthread_cond_t *cond)

• Unblocks all threads waiting on cond.

• If no thread waiting, then broadcast is a no-op.

10/1/2012 CSC 2/456 63

Use of Condition Variables

• IMPORTANT NOTE: A signal is “forgotten” if

there is no corresponding wait that has already

occurred

• Use semaphores (or construct a semaphore) if

you want the signal to be remembered

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 4

10/1/2012 CSC 2/456 64

TSP (Traveling Salesman)

• Goal:

– given a list of cities, a matrix of distances

between them, and a starting city,

– find the shortest tour in which all cities are

visited exactly once.

• Example of an NP-hard search problem.

• Algorithm: branch-and-bound.

10/1/2012 CSC 2/456 65

Branching

• Initialization:

– go from starting city to each of remaining
cities

– put resulting partial path into priority queue,
ordered by its current length.

• Further (repeatedly):

– take head element out of priority queue,

– expand by each one of remaining cities,

– put resulting partial path into priority queue.

10/1/2012 CSC 2/456 66

Finding the Solution

• Eventually, a complete path will be found.

• Remember its length as the current shortest

path.

• Every time a complete path is found, check if we

need to update current best path.

• When priority queue becomes empty, best path

is found.

10/1/2012 CSC 2/456 67

Using a Simple Bound

• Once a complete path is found, we have a lower

bound on the length of shortest path

• No use in exploring partial path that is already

longer than the current lower bound

• Better bounding methods exist …

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 5

10/1/2012 CSC 2/456 68

Sequential TSP: Data Structures

• Priority queue of partial paths.

• Current best solution and its length.

• For simplicity, we will ignore bounding.

10/1/2012 CSC 2/456 69

Sequential TSP: Code Outline

init_q(); init_best();

while((p=de_queue()) != NULL) {

 for each expansion by one city {

 q = add_city(p);

 if(complete(q)) { update_best(q) };

 else { en_queue(q) };

 }

}

10/1/2012 CSC 2/456 70

Parallel TSP: Possibilities

• Have each process do one expansion

• Have each process do expansion of one partial
path

• Have each process do expansion of multiple
partial paths

• Issue of granularity/performance, not an issue of
correctness.

• Assume: process expands one partial path.

10/1/2012 CSC 2/456 71

Parallel TSP: First Cut (part 1)

process i:

while((p=de_queue()) != NULL) {

 for each expansion by one city {

 q = add_city(p);

 if complete(q) { update_best(q) };

 else en_queue(q);

 }

}

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 6

10/1/2012 CSC 2/456 72

Parallel TSP: First cut (part 2)

• In de_queue: wait if q is empty

• In en_queue: signal that q is no longer empty

10/1/2012 CSC 2/456 73

Parallel TSP

process i:

while((p=de_queue()) != NULL) {

 for each expansion by one city {

 q = add_city(p);

 if complete(q) { update_best(q) };

 else en_queue(q);

 }

}

10/1/2012 CSC 2/456 74

Parallel TSP: Critical Sections

• All concurrently accessed shared data must be

protected by critical section

• Update_best must be protected by a critical

section

• En_queue and de_queue must be protected by

the same critical section

10/1/2012 CSC 2/456 75

Termination condition

• How do we know when we are done?

• All processes are waiting inside de_queue.

• Count the number of waiting processes before

waiting.

• If equal to total number of processes, we are

done.

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 7

10/1/2012 CSC 2/456 76

Parallel TSP: Mutual Exclusion

en_queue() / de_queue() {

 pthread_mutex_lock(&queue);

 …;

 pthread_mutex_unlock(&queue);

}

update_best() {

 pthread_mutex_lock(&best);

 …;

 pthread_mutex_unlock(&best);

}

10/1/2012 CSC 2/456 77

Parallel TSP: Condition Synchronization

de_queue() {
 pthread_mutex_lock(&queue);
 while((q is empty) and (not done)) {
 waiting++;
 if(waiting == p) {
 done = true;
 pthread_cond_broadcast(&empty);
 }
 else {
 pthread_cond_wait(&empty, &queue);
 waiting--;
 }
 }
 if(done)
 return null;
 else
 remove and return head of the queue;
 pthread_mutex_unlock(&queue);
}

SYNCHRONIZATION IN THE

LINUX KERNEL

10/1/2012 CSC 2/456 78 10/1/2012 CSC 2/456 79

Examples of OS Kernel

Synchronization

• Two processes making system calls to read/write on the same
file, leading to possible race condition on the file system data
structures in OS

• Interrupt handlers put I/O data into a buffer queue that
might be retrieved by application-initiated I/O system calls

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 8

10/1/2012 CSC 2/456 80

OS Kernel Structure for

Synchronization • OS is divided into two parts:
– upper part (serving application requests): system call, exception
– lower part (serving hardware device requests): interrupt handling

• Upper part runs in process/thread context
– resource accounting to corresponding process/thread
– running on a kernel stack usually associated with the

corresponding process/thread control block

• Lower part runs in a separate interrupt context
– resource accounting to who?
– running in a separate (often dedicated) kernel interrupt stack

• Blocking behaviors:
– Upper part may block (yield CPU), interleave with others
– Lower part does not block, must run atomically (one by one) –

interrupt handlers typically run with other interrupts disabled

• Preemption/priority:
– A lower part interrupt handler may preempt an upper part

system call processing, but not vice versa

10/1/2012 CSC 2/456 81

OS Kernel Synchronization
• Available mechanisms:

– disabling interrupts
– spin_lock (busy waiting lock)
– blocking synchronization (mutex lock, semaphore, …)

• Synchronization between upper part kernel “threads”

– typically blocking synchronization
– Spin lock if critical section short (only useful on multiprocessor)

• Synchronization between an upper part kernel “thread” and a
lower part interrupt handler:
– if blocking synchronization: block only at upper part, never lower

part (possible in semaphore)
– Spin lock may be used (only useful on multiprocessor)
– the upper part should disable interrupt before entering critical

section

10/1/2012 CSC 2/456 82

A Little More on OS Kernel

Structure
• Lower part interrupt handlers do not block

– interrupt handlers typically run with other interrupts disabled

• This can be a problem when interrupt handlers do more and more
work

• In modern OSes, interrupt handlers typically defer some work to
later (interruptible contexts)
– soft irqs in Linux

10/1/2012 CSC 256/456 83

Preemptible Kernel

• Preemptible kernel

– One in which a process switch may occur at

any point when a process is executing in

kernel mode

– Requires the re-entrant property

• Several processes may be executing in kernel

mode at the same time

• Use either re-entrant functions (ones that don’t

modify glabal variables) or thread-safe functions

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 9

10/1/2012 CSC 256/456 84

Synchronization in Linux

10/1/2012 CSC 256/456 85

Per-CPU Variables

• An array of data structures, one element per

CPU

• Ensure that element falls on a unique cache line

• Caveats?

– Still require disabling preemption on a single

CPU

– Prone to race conditions because of the

above

10/1/2012 CSC 256/456 86

Atomic Operations

• Read-modify-write

– Use specific atomic instructions or lock prefix

on x86

• Ensures that operations are not interleaved with

those by other threads

– Locally ensures that process will not get

context switched between read and write in

read-modify-write (single opcode)

10/1/2012 CSC 256/456 87

Memory Barriers

• Prevent compiler reordering (e.g., reordering for

optimized register use)

– Optimization barrier

• Prevent hardware reordering

– Memory barrier

– Instructions that operate on I/O, or are

“locked” (on x86 machines)

– Writes to control registers

– … a few others

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 10

10/1/2012 CSC 256/456 88

Spin Locks (+ R-W spinlocks)

• Ensure that code

executing spin lock is

non-blocking

• spinlock_t (uses xchgb on

x86)

• R-W spin locks

– Uses an atomic

decrement and

subtract with multiple

values for the lock

10/1/2012 CSC 256/456 89

Sequence locks

• Higher priority to writers

• Seqlock_t consists of two fields – spinlock and an integer sequence

• Reads – read sequence before and after

 do {

 seq = read_seqbegin(&seqlock);

 … critical section …

 } while (read_seqretry(&seqlock, seq);

• Writes – acquire spinlock, increase sequence by 1 on entry;
increase sequence by 1 and release spinlock on exit

– write_seqlock()

– write_sequnlock()

10/1/2012 CSC 256/456 90

Read-Copy Update

• Non-blocking form of synchronization

• Reader reads in place

– Data structure must be dynamically allocated and

referenced using pointers

– Disable preemption

• Copy data structure to write; switch pointers (requires

memory barriers to ensure that data structure

modification precedes pointer modification)

• Old copy can be freed only after all potential readers

have unlocked – special function to free old copy

10/1/2012 CSC 256/456 91

Semaphores

• struct semaphore

– atomic_t count

– wait (wait queue list address)

– Sleepers (count to indicate processes are

sleeping)

• To be used only by functions allowed to block

• Read/write semaphores

• Mutexes (binary semaphores)

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 11

10/1/2012 CSC 256/456 92

Synchronization in Linux

Goal: Maximize concurrency

• Per-CPU variables to avoid synchronization

• Atomic variables (non-blocking)

• Read-copy-update (non-blocking)

• Sequence locks (writer-prioritized reader/writer locks)

• Spin-locks – basic, r/w (blocking)

• Semaphores (sleeping)

• Local interrupt disabling

10/1/2012 CSC 2/456 93

Disclaimer

• Parts of the lecture slides contain original work from Gary
Nutt, Andrew S. Tanenbaum, and Kai Shen. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

