
Operating Systems 9/7/2018

CSC 256/456 1

9/7/2018 CSC 2/456 1

System Calls, Kernel Mode, and

Process Implementation

CS 256/456

Dept. of Computer Science, University

of Rochester

9/7/2018 CSC 2/456 2

Last Class …

• Processes

– Process concept

– Operations on processes

• Introduction to Signals

– User-level events

9/7/2018 CSC 2/456 3

Today

• Processes

– A process’s image in a computer

• System protection and kernel mode

• System calls and the interrupt interface

• More on signals

– User-level events

• I/O and process groups

• Pipes

– Inter-process communication

Processes
• Def: A process is an instance of a running program.

– Not the same as “program” or “processor”

• Process provides each program with two key

abstractions:

– Logical control flow

• Each program seems to have exclusive use of the CPU.

– Private address space

• Each program seems to have exclusive use of main memory.

• How are these Illusions maintained?

– Process executions interleaved (multitasking)

– Address spaces managed by virtual memory system

Operating Systems 9/7/2018

CSC 256/456 2

9/7/2018 CSC 2/456 5

Process and Its Image
• An operating system executes a variety of programs:

– A program that browses the Web,

– A program that serves Web requests, …

• Process – a program in execution

• A process’s state/image in a computer includes:
– User-mode address space

– Kernel data structures

– Registers (including program counter and stack pointer)

• Address space and memory protection

– Physical memory is divided into user memory and kernel memory

– Kernel memory can only be accessed when in the kernel mode

– Each process has its own exclusive address space in the user-
mode memory space (sort-of)

9/7/2018 CSC 2/456 6

Process Creation
• Actions/decisions when a process (parent) creates a new

process (child)

– Execution sequence

– Address space sharing

– Open files inheritance

– … …

• UNIX examples

– fork system call creates new process with a duplicated copy
of everything.

– exec system call used after a fork to replace the process’
memory space with a new program.

– child and parent compete for CPU like two normal processes.

9/7/2018 CSC 2/456 7

Private Address Spaces

• Each process has its own private address space.

kernel virtual memory

(code, data, heap, stack)

memory mapped region for

shared libraries

run-time heap

(managed by malloc)

user stack

(created at runtime)

unused
0

%esp (stack pointer)

memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment

(.data, .bss)

read-only segment

(.init, .text, .rodata)

loaded from the

executable file

0xffffffff

9/7/2018 CSC 2/456 8

User-mode Address Space

User-mode address space for a
process:

• Text: program code, instructions

• Data: initialized global and static
variables (those data whose size is
known before the execution)

• BSS (block started by symbol):
uninitialized global and static
variables

• Heap: dynamic memory (those being
malloc-ed)

• Stack: local variables and other
stuff for function invocations

Text

Data

Heap

Stack

0

0xffffffff

BSS

Operating Systems 9/7/2018

CSC 256/456 3

9/7/2018 CSC 2/456 9

Process Management

• A process is a program in execution

– Unit of work – A process needs certain resources,
including CPU time, memory, files, and I/O devices, to
accomplish its task

– Protection domain

• OS responsibilities for process management:

– Process creation and deletion

– Resource allocation

– Process scheduling, suspension, and resumption

– Process synchronization, inter-process communication

9/7/2018 CSC 2/456 10

Process Control Block (PCB)

OS data structure (in kernel
memory) maintaining information
associated with each process.

• Process state

• Program counter

• CPU registers

• CPU scheduling information

• Memory-management information

• Accounting information

• Information about open files

• Other

SYSTEM PROTECTION

9/7/2018 CSC 2/456 11 9/7/2018 CSC 2/456 12

System Protection
• User programs (programs not belonging to the OS) are generally not

trusted
– A user program may use an unfair amount of resource
– A user program may maliciously cause other programs or the OS to

fail

• Need protection against untrusted user programs; the system must
differentiate between at least two modes of operations
1. User mode – execution of user programs

o untrusted
o not allowed to have complete/direct access to hardware resources

2. Kernel mode (also system mode or monitor mode) – execution of the
operating system

o trusted
o allowed to have complete/direct access to hardware resources

o Hardware support is needed for such protection

Operating Systems 9/7/2018

CSC 256/456 4

9/7/2018 CSC 2/456 13

Unix Startup: Step 1

init [1]

[0] Process 0: handcrafted kernel process

Child process 1 execs /sbin/init

1. Pushing reset button loads the PC with the address of a small

bootstrap program.

2. Bootstrap program loads the boot block (disk block 0).
3. Boot block program loads kernel binary (e.g., /boot/vmlinux)

4. Boot block program passes control to kernel.

5. Kernel handcrafts the data structures for process 0.

Process 0 forks child process 1

9/7/2018 CSC 2/456 14

Transition between User/Kernel Mode

• When does the machine run in kernel mode?

– after machine boot

– interrupt handler

– system call

– exception

Kernel User

Interrupt/syscall/exception

To user mode

Bootstrap

I/O Device Protection

9/7/2018 CSC 2/456 15 9/7/2018 CSC 2/456 16

I/O Device Controllers

• I/O devices have both mechanical component &
electronic component

• The electronic component is the device controller

– It contains control logic, command registers, status
registers, and on-board buffer space

Device Controller State

Control registers

Status registers

Data buffers

Operating Systems 9/7/2018

CSC 256/456 5

9/7/2018 CSC 2/456 17

I/O Ports & Memory-Mapped I/O

I/O methods:
• Separate I/O and

memory space; special
I/O commands
(IN/OUT)

• Memory-mapped I/O

Issues with them:
• Convenience/efficiency when using high-level language;
• Protection mechanisms;
• Data caching

9/7/2018 CSC 2/456 18

I/O Operations
• How is I/O done?

– I/O devices are much slower than CPU

• Synchronous (polling)
– After I/O starts, busy-wait while polling (or poll periodically) the

device status register until it shows the operation completes

• Asynchronous (interrupt-driven)
– After I/O starts, control returns to the user program without

waiting for I/O completion
– Device controller later informs CPU that it has finished its

operation by causing an interrupt
– When an interrupt occurs, current execution is put on hold; the CPU

jumps to a service routine called an “interrupt handler”

9/7/2018 CSC 2/456 19

Protection of I/O Devices

• User programs are not allowed to directly access I/O
devices

– Special I/O instructions can only be used in kernel
mode

– Controller registers can only be accessed in kernel
mode

• So device drivers, I/O interrupt handlers must run in
kernel mode

• User programs perform I/O through requesting the OS
(using system calls)

9/7/2018 CSC 2/456 20

The Device-Controller-Software Relationship
Application

Program

Device Controller

Device

S
o
ft

w
ar

e
in

 t
h

e
m

ac
h

in
e

Device driver

Device driver
• Software Program to manage device

controller

• System software (part of OS)
High-level OS

software

Device controller
• Contains control logic, command

registers, status registers, and on-

board buffer space

• Firmware/hardware

Operating Systems 9/7/2018

CSC 256/456 6

9/7/2018 CSC 2/456 21

System Call Using the Trap Instruction
…

read();

…

read() {

…

trap N_SYS_READ()

…

}

sys_read()

sys_read() {

/* system function */

…

return;

}

KernelTrap Table

User program

9/7/2018 CSC 2/456 22

Interrupt Handlers
1. Save registers of the old process

2. Set up context for interrupt service procedure (switch from the
user space to kernel space: MMU, stack, …)

3. Run service procedure; when safe, re-enable interrupts

4. Run scheduler to choose the new process to run next
5. Set up context (MMU, registers) for process to run next
6. Start running the new process

How much cost is it? Is it a big deal?

For Gigabit Ethernet, each packet arrives once every 12us.

9/7/2018 CSC 2/456 23

Interrupt Vectors

• Intel Pentium processor event-vector table

0: divide by zero

6: invalid opcode

11: segment not present

12: stack fault

14: page fault

…31: non-maskable

32-255: maskable interrupts

CPU Protection

9/7/2018 CSC 2/456 24

Operating Systems 9/7/2018

CSC 256/456 7

9/7/2018 CSC 2/456 25

CPU Protection

• Goal of CPU protection

– A user program can’t hold the CPU for ever

• Timer – interrupts computer after specified period to ensure
the OS kernel maintains control

– Timer is decremented every clock tick

– When timer reaches the value 0, an interrupt occurs

– CPU time sharing is implemented in the timer interrupt

Memory Protection

9/7/2018 CSC 2/456 26

9/7/2018 CSC 2/456 27

Memory Protection
• Goal of memory protection?

– A user program can’t use arbitrary amount of memory

– A user program can’t access data belonging to the
operating system or other user programs

• How to achieve memory protection?

– Add two registers that determine the range of legal
addresses a program may access:

• Base register – holds the smallest legal physical memory address

• Limit register – contains the size of the range

• Memory outside the defined range is protected

9/7/2018 CSC 2/456 28

Hardware Address Protection

OS kernel

program 4

program 3

program 2

program 1

300040

120900

base register

limit register

0

256000

300040

420940

880000

1024000

• Address of each
memory address is
checked against
“base” and
“base+limit”

• Trap to the OS
kernel if it falls
outside of the
range (an
exception)

Operating Systems 9/7/2018

CSC 256/456 8

In Practice Today: Virtual Memory

• Indirect memory access

– Memory access with a virtual address which needs to
be translated into physical address

29 9/7/2018 CSC 2/456 30

Direct Memory Access (DMA)

• Are the addresses CPU sends to the DMA controller virtual or
physical addresses?

• Can the disk controller directly read data into the main memory
(bypassing the controller buffer)?

9/7/2018 CSC 2/456 31

Signals

• A signal is a small message that notifies a process that an event of
some type has occurred in the system.

– Kernel abstraction for exceptions and interrupts.

– Sent from the kernel (sometimes at the request of another
process) to a process.

– Different signals are identified by small integer ID’s

– The only information in a signal is its ID and the fact that it
arrived.

9/7/2018 CSC 2/456 32

Default Actions

• Each signal type has a predefined default

action, which is one of:

–The process terminates

–The process terminates and dumps core.

–The process stops until restarted by a

SIGCONT signal.

–The process ignores the signal.

Operating Systems 9/7/2018

CSC 256/456 9

9/7/2018 CSC 2/456 33

Some Common Signals and

Their Defaults

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt from keyboard (ctl-c)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

9/7/2018 CSC 2/456 34

Installing Signal Handlers
• The signal function modifies the default action associated with the

receipt of signal signum:

– handler_t *signal(int signum, handler_t *handler)

• Different values for handler:

– SIG_IGN: ignore signals of type signum

– SIG_DFL: revert to the default action on receipt of signals of type
signum.

– Otherwise, handler is the address of a signal handler

• Called when process receives signal of type signum

• Referred to as “installing” the handler.

• Executing handler is called “catching” or “handling” the signal.

• When the handler executes its return statement, control passes back to

instruction in the control flow of the process that was interrupted by

receipt of the signal.

Standard In, Out, and Error

• By convention, file descriptors 0, 1, and 2 are

used for:

– Standard Input

– Standard Output

– Standard Error

35 9/7/2018 CSC 2/456 36

Process Groups
• Every process belongs to exactly one process group

Fore-

ground

job

Back-

ground

job #1

Back-

ground

job #2

Shell

Child Child

pid=10

pgid=10

Foreground

process group 20

Background

process group 32
Background

process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp() – Return process group of current process

setpgid() – Change process group of a process

Which processes can read and write from the terminal?
See also – isatty(), tcsetpgrp()

Operating Systems 9/7/2018

CSC 256/456 10

Process Groups

• Every process belongs to exactly one process

group

• Can send signal to an entire group

• getpgrp() – Return process group of current

process

• setpgid() – Change process group of a process

37 9/7/2018 CSC 2/456 38

Sending Signals with kill

Program
• kill program sends

arbitrary signal to a

process or process

group

• Examples

– kill –9 24818

• Send SIGKILL to

process 24818

– kill –9 –24817

• Send SIGKILL to

every process in

process group

24817.

linux> ./forks 16

linux> Child1: pid=24818 pgrp=24817

Child2: pid=24819 pgrp=24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps

linux> kill -9 -24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24823 pts/2 00:00:00 ps

linux>

9/7/2018 CSC 2/456 39

Sending Signals from the Keyboard

• Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the
foreground process group.

– SIGINT – default action is to terminate each process

– SIGTSTP – default action is to stop (suspend) each process

Fore-

ground

job

Back-

ground

job #1

Back-

ground

job #2

Shell

Child Child

pid=10

pgid=10

Foreground

process group 20

Background

process

group 32

Background

process

group 40

pid=20

pgid=20
pid=32

pgid=32

pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

Example of ctrl-c and ctrl-z

linux> ./forks 17

Child: pid=24868 pgrp=24867

Parent: pid=24867 pgrp=24867

<typed ctrl-z>

Suspended

linux> ps a

PID TTY STAT TIME COMMAND

24788 pts/2 S 0:00 -usr/local/bin/tcsh -i

24867 pts/2 T 0:01 ./forks 17

24868 pts/2 T 0:01 ./forks 17

24869 pts/2 R 0:00 ps a

bass> fg

./forks 17

<typed ctrl-c>

linux> ps a

PID TTY STAT TIME COMMAND

24788 pts/2 S 0:00 -usr/local/bin/tcsh -i

24870 pts/2 R 0:00 ps a

Operating Systems 9/7/2018

CSC 256/456 11

Sending Signals with kill

Function
void fork12()

{

pid_t pid[N];

int i, child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)

while(1); /* Child infinite loop */

/* Parent terminates the child processes */

for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);

kill(pid[i], SIGINT);

}

/* Parent reaps terminated children */

for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

}

}

9/7/2018 CSC 2/456 42

Receiving Signals

• Suppose kernel is returning from exception handler and is ready to

pass control to process p.

• Kernel computes pnb = pending & ~blocked

– The set of pending nonblocked signals for process p

• If (pnb == 0)

– Pass control to next instruction in the logical flow for p.

• Else

– Choose least nonzero bit k in pnb and force process p to

receive signal k.

– The receipt of the signal triggers some action by p

– Repeat for all nonzero k in pnb.

– Pass control to next instruction in logical flow for p.

Signal Handling Example

void int_handler(int sig)

{

printf("Process %d received signal %d\n",

getpid(), sig);

exit(0);

}

void fork13()

{

pid_t pid[N];

int i, child_status;

signal(SIGINT, int_handler);

. . .

}

linux> ./forks 13

Killing process 24973

Killing process 24974

Killing process 24975

Killing process 24976

Killing process 24977

Process 24977 received signal 2

Child 24977 terminated with exit status 0

Process 24976 received signal 2

Child 24976 terminated with exit status 0

Process 24975 received signal 2

Child 24975 terminated with exit status 0

Process 24974 received signal 2

Child 24974 terminated with exit status 0

Process 24973 received signal 2

Child 24973 terminated with exit status 0

linux>

Non-queuing Nature of Signals
• Pending signals

are not queued

–For each signal

type, just have

single bit

indicating

whether or not

signal is pending

–Even if multiple

processes have

sent this signal

int ccount = 0;

void child_handler(int sig)

{

int child_status;

pid_t pid = wait(&child_status);

ccount--;

printf("Received signal %d from process %d\n",

sig, pid);

}

void fork14()

{

pid_t pid[N];

int i, child_status;

ccount = N;

signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {

/* Child: Exit */

exit(0);

}

while (ccount > 0)

pause();/* Suspend until signal occurs */

}

Operating Systems 9/7/2018

CSC 256/456 12

Living With Nonqueuing Signals
• Must check for all terminated jobs

– Typically loop with wait(blocking) or waitpid with

appropriate parameter for non-blocking call
void child_handler2(int sig)

{

int child_status;

pid_t pid;

while ((pid = wait(&child_status)) > 0) {

ccount--;

printf("Received signal %d from process %d\n",

sig, pid);

}

}

void fork15()

{

. . .

signal(SIGCHLD, child_handler2);

. . .

}

A Program That Reacts to

Externally Generated Events (ctrl-c)

#include <stdlib.h>

#include <stdio.h>

#include <signal.h>

void handler(int sig) {

printf("You think hitting ctrl-c will stop the bomb?\n");

sleep(2);

printf("Well...");

fflush(stdout);

sleep(1);

printf("OK\n");

exit(0);

}

main() {

signal(SIGINT, handler); /* installs ctl-c handler */

while(1) {

}

}

A Program That Reacts to Internally

Generated Events
#include <stdio.h>

#include <signal.h>

int beeps = 0;

/* SIGALRM handler */

void handler(int sig) {

printf("BEEP\n");

fflush(stdout);

if (++beeps < 5)

alarm(1);

else {

printf("BOOM!\n");

exit(0);

}

}

main() {

signal(SIGALRM, handler);

alarm(1); /* send SIGALRM in

1 second */

while (1) {

/* handler returns here */

}

}

linux> a.out

BEEP

BEEP

BEEP

BEEP

BEEP

BOOM!

bass>
9/7/2018 CSC 2/456 48

Interprocess Communication: Pipes

• Conduit allowing two processes to communicate

– Unidirectional or bidirectional

– Full-duplex or half-duplex two-way

communication

– Is parent-child relationship required?

– Is communication across a network allowed?

Operating Systems 9/7/2018

CSC 256/456 13

9/7/2018 CSC 2/456 49

Ordinary Unix Pipes
• A unidirectional data channel that can be used

for interprocess communication

• Treated as a special type of file, accessed using

read() and write()

• Cannot be accessed from outside the process

that created it unless inherited (by a child)

• Pipe ceases to exist once closed or when

process terminates

• System calls

– pipe (int fd[])

– dup2

Example

• pipe(int fd[])

– fd[0] =

read_end

– fd[1] =

write_end

int fd[2];

pid_t pid;

pipe(fd);

pid = fork();

if (pid > 0) {

/* Parent Process */

close (fd[0]);

/* Write a message to the child process */

write (fd[1], write_msg, strlen(write_msg)+1);

close (fd[1]);

} else {

/* Child Process */

close(fd[1]);

/* Read a message from the parent process */

read(fd[0], read_msg, BUFFER_SIZE);

printf(“read %s”, read_msg);

close(fd[0];

}

50

fd[1] fd[0]

dup2() System Call

• Make one file descriptor point to the same

file as another

• dup2 (old_fd, new_fd)

• Return value is -1 on error and new_fd on

success

• dup2(1,2)

51

1

2

3

terminal

pipe

Standard In, Out, and Error

• By convention, file descriptors 0, 1, and 2 are

used for:

– Standard Input

– Standard Output

– Standard Error

52

Operating Systems 9/7/2018

CSC 256/456 14

9/7/2018 CSC 2/456 53

Class so far …

• Processes

– Process concept

– Operations on processes

– A process’s image in a computer

• System protection and kernel mode

• System calls and the interrupt interface

• Signals

– User-level events

• Pipes

– Inter-process communication

9/7/2018 CSC 2/456 54

Today

• System calls and the interrupt interface

• Process implementation

• Context switches and the scheduling process

• Inter-process communication

– Shared memory

• Thread

– Thread concept

– Multithreading models

– Types of threads

9/7/2018 CSC 2/456 90

Disclaimer

• Parts of the lecture slides contain the original work of Kai
Shen, John Criswell, Abraham Silberschatz, Peter B. Galvin,
Greg Gagne, Andrew S. Tanenbaum, and Gary Nutt. The
slides are intended for the sole purpose of instruction of
operating systems at the University of Rochester. All
copyrighted materials belong to their original owner(s).

