
Operating Systems 9/11/2012

CSC 256/456 - Fall 2012 1

9/11/2012 CSC 2/456 29

Recap of the Last Class

• System protection and kernel mode

• System calls and the interrupt interface

• Processes

– Process concept

– A process’s image in a computer

– Operations on processes

– Context switches and the scheduling
process

9/11/2012 CSC 2/456 30

Process and Its Image
• An operating system executes a variety of programs:

– A program that browses the Web

– A program that serves Web requests

• Process – a program in execution.

• A process’s state/image in a computer includes:

– User-mode address space

– Kernel data structure

– Registers (including program counter and stack pointer)

• Address space and memory protection

– Physical memory is divided into user memory and kernel memory

– Kernel memory can only be accessed when in the kernel mode

– Each process has its own exclusive address space in the user-
mode memory space (sort-of)

9/11/2012 CSC 2/456 31

Process Management

• A process is a program in execution

– Unit of work – A process needs certain resources,
including CPU time, memory, files, and I/O devices, to
accomplish its task

– Protection domain

• OS responsibilities for process management:

– Process creation and deletion

– Process scheduling, suspension, and resumption

– Process synchronization, inter-process communication

9/11/2012 CSC 2/456 32

Private Address Spaces

• Each process has its own private address space.

kernel virtual memory

(code, data, heap, stack)

memory mapped region for

shared libraries

run-time heap

(managed by malloc)

user stack

(created at runtime)

unused
0

%esp (stack pointer)

memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment

(.data, .bss)

read-only segment

(.init, .text, .rodata)

loaded from the

executable file

0xffffffff

Operating Systems 9/11/2012

CSC 256/456 - Fall 2012 2

9/11/2012 CSC 2/456 33

User-mode Address Space

User-mode address space for a
process:

• Text: program code, instructions

• Data: initialized global and static
variables (those data whose size is
known before the execution)

• BSS (block started by symbol):
uninitialized global and static
variables

• Heap: dynamic memory (those being
malloc-ed)

• Stack: local variables and other
stuff for function invocations

Text

Data

Heap

Stack

0

0xffffffff

BSS

9/11/2012 CSC 2/456 34

Process Control Block (PCB)

OS data structure (in kernel
memory) maintaining information
associated with each process.

• Process state

• Program counter

• CPU registers

• CPU scheduling information

• Memory-management information

• Accounting information

• Information about open files

• maybe kernel stack?

9/11/2012 CSC 2/456 35

Queues for PCBs

• Ready queue –
set of all
processes ready
for execution.

• Device queues –
set of processes
waiting for an
I/O device.

• Process
migration
between the
various queues.

9/11/2012 CSC 2/456 36

Process State
• As a process executes, it changes state

– new: The process is being created

– ready: The process is waiting to be assigned to a process

– running: Instructions are being executed

– waiting: The process is waiting for some event to occur

– terminated: The process has finished execution

Operating Systems 9/11/2012

CSC 256/456 - Fall 2012 3

9/11/2012 CSC 2/456 37

Process Creation
• When a process (parent) creates a new process (child)

– Execution sequence?

– Address space sharing?

– Open files inheritance?

– … …

• UNIX examples

– fork system call creates new process with a duplicated copy
of everything.

– exec system call used after a fork to replace the process’
memory space with a new program.

– child and parent compete for CPU like two normal processes.

• Copy-on-write

9/11/2012 CSC 2/456 38

Today

• Context switches and the scheduling process

• Inter-process communication

– Shared memory

• Thread

– Thread concept

– Multithreading models

– Types of threads

9/11/2012 CSC 2/456 39

Context Switching

• Processes are managed by a shared chunk of OS code

called the kernel

– Important: the kernel is not a separate process, but

rather runs as part of some user process

• Control flow passes from one process to another via a

context switch.

 Process A

code

Process B

code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

9/11/2012 CSC 2/456 40

Scheduling: Transferring Context

Blocks

Coroutines

transfer(other)

save all callee-saves registers on stack, including ra

and fp

*current := sp

current := other

sp := *current

pop all callee-saves registers (including ra, but NOT

sp!)

return (into different coroutine!)

Operating Systems 9/11/2012

CSC 256/456 - Fall 2012 4

9/11/2012 CSC 2/456 41

Uniprocessor Scheduling

• Use Ready List to reschedule voluntarily (cooperative threading)

reschedule:

– t : cb := dequeue(ready_list)

– transfer(t)

yield:

– enqueue(ready_list, current)

– reschedule

sleep_on(q):

enqueue(q, current)

reschedule

9/11/2012 CSC 2/456 42

Preemption

• Use timer interrupts or signals to trigger involuntary
yields

• Protect scheduler data structures by disabling/reenabling
prior to/after rescheduling

yield:

disable_signals

enqueue(ready_list, current)

reschedule

re-enable_signals

9/11/2012 CSC 2/456 43

CPU Switch From Process to

Process
When can the
OS switch the
CPU from one
process to
another?

Which one to
switch to? -
scheduling

9/11/2012 CSC 2/456 44

Process Termination
• Process executes last statement and gives the control

to the OS (exit)

– Notify parent if it is wait-ing

– Deallocate process’s resources

• The OS may forcefully terminate a process.

– Software exceptions

– Receiving certain signals

Operating Systems 9/11/2012

CSC 256/456 - Fall 2012 5

9/11/2012 CSC 2/456 45

Interprocess Communication

• Reasons for processes to cooperate

– Information sharing (e.g., files)

– Computation speedup

– Modularity and protection

– Convenience - multitasking

9/11/2012 CSC 2/456 46

Mechanisms for Interprocess

Communication

• Shared memory

• Message passing

– Pipes, sockets, remote procedure calls

9/11/2012 CSC 2/456 47

Shared Memory: POSIX interface

• shm_get – returns the identifier of a shared memory

segment

• shmat – attaches the shared memory segment to the

address space

• shmdt – detaches the segment located at the specified

address

• shmctl – control of shared memory segments, including

deletion

• Other possibilities: mmap (file sharing with preserved

properties)

9/11/2012 CSC 2/456 48

Message Passing

• Direct or indirect communication – processes or
ports

• Fixed or variable size

• Send by copy or reference

• Automatic or explicit buffering

• Blocking or non-blocking (send or receive)

• Examples: client-server sockets, Mach ports,
Windows 2000 local procedure call (LPC),
remote procedure call (RPC, RMI)

Operating Systems 9/11/2012

CSC 256/456 - Fall 2012 6

9/11/2012 CSC 2/456 49

Processes or Threads

• A process or thread is a potentially-active execution context

• Processes/threads can come from

– Multiple CPUs

– Kernel-level multiplexing of single physical CPU (kernel-level
threads or processes)

– Language or library-level multiplexing of kernel-level abstraction
(user-level threads)

• Threads can run

– Truly in parallel (on multiple CPUs)

– Unpredictably interleaved (on a single CPU)

– Run-until-block (coroutine-style)

9/11/2012 CSC 2/456 50

Processes and Threads
• Thread – a program in execution; without a dedicated

address space.

• OS memory protection is only applied to processes.

9/11/2012 CSC 2/456 51

Processes Vs. Threads

• Process

– Single address space

– Single thread of control for executing program

– State information
• Page tables, swap images, file descriptors, queued I/O requests, saved

registers

• Threads

– Separate notion of execution from the rest of the definition of a process

– Other parts potentially shared with other threads

– Program counter, stack of activation records, control block (e.g., saved
registers/state info for thread management)

– Kernel-level (lightweight process) handled by the system scheduler

– User-level handled in user mode

9/11/2012 CSC 2/456 52

Why Use Threads?

• Multithreading is used for parallelism/concurrency. But why
not multiple processes?

– Memory sharing.

– Efficient synchronization between threads

– Less context switch overhead

Operating Systems 9/11/2012

CSC 256/456 - Fall 2012 7

9/11/2012 CSC 2/456 53

User/Kernel Threads
• User threads

– Thread data structure is in user-mode
memory

– scheduling/switching done at user
mode

• Kernel threads

– Thread data structure is in kernel
memory

– scheduling/switching done by the OS
kernel

9/11/2012 CSC 2/456 54

User/Kernel Threads (cont.)
• Benefits of user threads

– lightweight – less context switching overhead

– more efficient synchronization??

– flexibility – allow application-controlled scheduling

• Problems of user threads

– can’t use more than one processor

– oblivious to kernel events, e.g., all threads in a process
are put to wait when only one of them does I/O

9/11/2012 CSC 2/456 55

Mixed User/Kernel Threads

• M user threads run on N kernel threads (M≥N)

– N=1: pure user threads

– M=N: pure kernel threads

– M>N>1: mixed model

user threads

kernel threads

CPU CPU

9/11/2012 CSC 2/456 56

Solaris/Linux Threads
• Solaris

– supports mixed model

• Linux

– No standard user threads on Linux
– Processes and threads treated in a similar manner

(both called tasks)
– Processes are tasks with exclusive address space
– Tasks can also share the address space, open files, …

Operating Systems 9/11/2012

CSC 256/456 - Fall 2012 8

9/11/2012 CSC 2/456 57

Pthreads
• Each OS has its own thread package with different

Application Programming Interfaces  poor portability.

• Pthreads

– A POSIX standard API for thread management and
synchronization.

– API specifies behavior of the thread library, not the
implementation.

– Commonly supported in UNIX operating systems.

9/11/2012 CSC 2/456 58

Issues with the Threading Model

• Thread-local storage – what about globals?

• Stack management

• Interaction with fork and exec system calls

– Two versions of fork?

• Signal handling – which thread should the signal be
delivered to?

– Synchronous

– All

– Assigned thread

– Unix: could assign a specific thread to handle signals

– Windows: asynchronous procedure calls, which are
thread-specific

9/11/2012 CSC 2/456 59

Disclaimer

• Parts of the lecture slides contain the original work of Kai
Shen, Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

