
Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 1

10/1/2012 CSC 2/456 1

Synchronization Principles

CS 256/456

Dept. of Computer Science, University

of Rochester

10/1/2012 CSC 2/456 2

Synchronization Principles
• Background

– Concurrent access to shared data may result in data
inconsistency.

– Maintaining data consistency requires mechanisms
to ensure the orderly execution of cooperating
processes.

• The Critical-Section Problem

– Pure software solution
– With help from the hardware

• Synchronization without busy waiting (with the support of
process/thread scheduler)

– Semaphore
– Mutex lock
– Condition variables

10/1/2012 CSC 2/456 3

Bounded Buffer

• Shared data

typedef struct { ... } item;

item buffer[BUFFER_SIZE];

int in = 0, out = 0;

int counter = 0;

• Producer process

item nextProduced;

while (1) {

 while (((in+1)%BUFFER_SIZE==out)

 ; /* do nothing */

 buffer[in] = nextProduced;

 in = (in+1) % BUFFER_SIZE;

 counter++;

}

• Consumer process

item nextConsumed;

while (1) {

 while (in==out)

 ; /* do nothing */

 nextConsumed = buffer[out];

 out = (out+1) % BUFFER_SIZE;

 counter--;

}

out in

counter

10/1/2012 CSC 2/456 4

Bounded Buffer

• Shared data

typedef struct { ... } item;

item buffer[BUFFER_SIZE];

int in = 0, out = 0;

int counter = 0;

• Producer process

item nextProduced;

while (1) {

 while (counter==BUFFER_SIZE)

 ; /* do nothing */

 buffer[in] = nextProduced;

 in = (in+1) % BUFFER_SIZE;

 counter++;

}

• Consumer process

item nextConsumed;

while (1) {

 while (counter==0)

 ; /* do nothing */

 nextConsumed = buffer[out];

 out = (out+1) % BUFFER_SIZE;

 counter--;

}

out in

counter

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 2

10/1/2012 CSC 2/456 5

Bounded Buffer
• The following statements must be performed atomically:

 counter++;

counter--;

• Atomic operation means an operation that completes in its entirety
without interruption.

• The statement “counter++” may be compiled into the following
instruction sequence:

 register1 = counter;

 register1 = register1 + 1;

counter = register1;

• The statement “counter--” may be compiled into:

 register2 = counter;

register2 = register2 - 1;

counter = register2;

10/1/2012 CSC 2/456 6

Race Condition

• Race condition:

– The situation where several processes access and
manipulate shared data concurrently.

– The final value of the shared data and/or effects on
the participating processes depends upon the order of
process execution – nondeterminism.

• To prevent race conditions, concurrent processes must be

synchronized.

10/1/2012 CSC 2/456 7

The Critical-Section Problem
• Problem context:

– n processes all competing to use some shared
data

– Each process has a code segment, called critical
section, in which the shared data is accessed.

• Find a solution that satisfies the following:
1. Mutual Exclusion. No two processes simultaneously in the critical

section.
2. Progress. No process running outside its critical section may

block other processes.
3. Bounded Waiting/Fairness. Given the set of concurrent

processes, a bound must exist on the number of times that other
processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and
before that request is granted.

10/1/2012 CSC 2/456 8

Eliminating Concurrency
• First idea: eliminating the chance of context switch when a

process runs in the critical section.

– effective as a complete solution only on a single-
processor machine

– only for short critical sections

• How to eliminate context switch?

– software exceptions
– hardware interrupts
– system calls

• Disabling interrupts?

– not feasible for user programs since they shouldn’t
be able to disable interrupts

– feasible for OS kernel programs

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 3

10/1/2012 CSC 2/456 9

Critical Section for Two Processes

• Only 2 processes, P0 and P1

• General structure of process Pi (other process Pj)
 do {
 entry section
 critical section
 exit section
 remainder section
 } while (1);
• Processes may share some common variables to synchronize their

actions.

• Assumption: instructions are atomic and no re-ordering of
instructions.

10/1/2012 CSC 2/456 10

Algorithm 1
• Shared variables:

– int turn;
initially turn = 0;

– turn==i Pi can enter its critical section

• Process Pi
 do {

 while (turn != i) ;

 critical section
 turn = j;

 remainder section
 } while (1);

• Satisfies mutual exclusion, but not progress

10/1/2012 CSC 2/456 11

Algorithm 2
• Shared variables:

– boolean flag[2];
initially flag[0] = flag[1] = false;

– flag[i]==true Pi ready to enter its critical section

• Process Pi
 do {

 flag[i] = true;
 while (flag[j]) ;
 critical section

 flag[i] = false;

 remainder section
 } while (1);

• Satisfies mutual exclusion, but not progress requirement.

10/1/2012 CSC 2/456 12

Algorithm 3
• Combine shared variables of algorithms 1 and 2.

• Process Pi
 do {

 flag[i] = true;
 turn = j;
 while (flag[j] && turn==j) ;

 critical section
 flag[i] = false;

 remainder section
 } while (1);

• Meets all three requirements; solves the critical-section
problem for two processes. called Peterson’s algorithm.

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 4

10/1/2012 CSC 2/456 13

Basic Hardware Mechanisms for

Synchronization

• Test-and-set – atomic exchange

• Fetch-and-op (e.g., increment) – returns value and

atomically performs op (e.g., increments it)

• Compare-and-swap – compares the contents of two

locations and swaps if identical

• Load-locked/store conditional – pair of instructions –

deduce atomicity if second instruction returns correct

value

10/1/2012 CSC 2/456 14

Synchronization Using Special

Instruction: TSL (test-and-set)

entry_section:

 TSL R1, LOCK | copy lock to R1 and set lock to 1

 CMP R1, #0 | was lock zero?

 JNE entry_section | if it wasn’t zero, lock was set, so loop

 RET | return; critical section entered

exit_section:

 MOV LOCK, #0 | store 0 into lock

 RET | return; out of critical section

• Does it solve the synchronization problem?

• Does it work for multiple (>2) processes?

10/1/2012 CSC 2/456 15

Implementing Locks Using

Test&Set
• On the SPARC ldstub moves an unsigned byte into the

destination register and rewrites the same byte in
memory to all 1s
_Lock_acquire:

 ldstub [%o0], %o1

 addcc %g0, %o1, %g0

 bne _Lock

 nop

fin:

 jmpl %r15+8, %g0

 nop

_Lock_release:

 st %g0, [%o0]

 jmpl %r15+8, %g0

 nop 10/1/2012 CSC 2/456 16

Using ll/sc for Atomic Exchange

• Swap the contents of R4 with the memory location

specified by R1

try: mov R3, R4 ; mov exchange value

 ll R2, 0(R1) ; load linked

 sc R3, 0(R1) ; store conditional

 beqz R3, try ; branch if store fails

 mov R4, R2 ; put load value in R4

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 5

10/1/2012 CSC 2/456 17

Solving the Critical Section Problem

with Busy Waiting
• In all our solutions, a process enters a loop until the entry

is granted busy waiting.

• Problems with busy waiting:
– Waste of CPU time
– If a process is switched out of CPU during critical

section
• other processes may have to waste a whole CPU

quantum
• may even deadlock with strictly prioritized

scheduling (priority inversion problem)
• Solution

– Avoid busy wait as much as possible (yield the
processor instead).

– If you can’t avoid busy wait, you must prevent
context switch during critical section (disable
interrupts while in the kernel) 10/1/2012 CSC 2/456 18

Recap
• Concurrent access to shared data may result in data

inconsistency – race condition.

• The Critical-Section problem
– Pure software solution
– With help from the hardware

• Problems with busy-waiting-based synchronization
– Waste CPU, particularly when context switch

occurs while a process is inside critical section
• Solution

– Avoid busy wait as much as possible (yield the
processor instead).

– If you can’t avoid busy wait, you must prevent
context switch during critical section (disable
interrupts while in the kernel)

10/1/2012 CSC 2/456 19

Scheduler-Based Synchronization
• In all our solutions so far, a process enters a loop until the

entry is granted busy waiting.

• Problems with busy waiting:
– Waste of CPU time
– If a process is switched out of CPU during critical

section
• other processes may have to waste a whole CPU

quantum
• may even deadlock with strictly prioritized

scheduling (priority inversion problem)
• Solution

– Avoid busy wait as much as possible (yield the
processor instead) – scheduler-based synchronization

– If you can’t avoid busy wait, you must prevent
context switch during critical section (disable
interrupts while in the kernel) 10/1/2012 CSC 2/456 20

Semaphore
• Synchronization tool that does not

require busy waiting.

• Semaphore S – integer variable
which can only be accessed via two
atomic operations

• Semantics (roughly) of the two
operations:

 wait(S) or P(S):

 wait until S>0;

 S--;

 signal(S) or V(S):

 S++;

• Solving the critical section
problem:

Shared data:
 semaphore mutex=1;

Process Pi:
wait(mutex);
 critical section

 signal(mutex);
 remainder section

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 6

10/1/2012 CSC 2/456 21

Semaphore Implementation
• Define a semaphore as a

record
 typedef struct {

 int value;

 proc_list *L;

} semaphore;

• Assume two simple
operations:

– block suspends the
process that invokes it.

– wakeup(P) resumes the
execution of a blocked
process P.

• Semaphore operations now defined as
(both are atomic):

 wait(S):

 value = (S.value--);

 if (value < 0) {

 add this process to S.L;

 block;

 }

 signal(S):

 value = (S.value++);

 if (value <= 0) {

 remove a process P from S.L;

 wakeup(P);

 }

How do we make sure wait(S) and signal(S) are atomic?
So have we truly removed busy waiting?

10/1/2012 CSC 2/456 22

Mutex Lock (Binary Semaphore)
• Mutex lock – a semaphore with only two state: locked/unlocked

• Semantics of the two (atomic) operations:

 lock(mutex):

 wait until mutex==unlocked;

 mutex=locked;

 unlock(mutex):

 mutex=unlocked;

• Can you implement mutex lock using semaphore?

• How about the opposite?

10/1/2012 CSC 2/456 23

Implement Semaphore Using Mutex

Lock

• Data structures:

 mutex_lock L1, L2;

 int C;

• Initialization:
 L1 = unlocked;

 L2 = locked;

 C = initial value of semaphore;

• wait operation:
 lock(L1);

 C --;

 if (C < 0) {

 unlock(L1);

 lock(L2);

 }

 unlock(L1);

• signal operation:
 lock(L1);

 C ++;

 if (C <= 0)

 unlock(L2);

 else

 unlock(L1);

10/1/2012 CSC 2/456 24

Classical Problems of

Synchronization

• Bounded-Buffer Problem

• Dining-Philosophers Problem

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 7

10/1/2012 CSC 2/456 25

Bounded Buffer

• Shared data

typedef struct { ... } item;

item buffer[BUFFER_SIZE];

int in = 0, out = 0;

int counter = 0;

• Producer process

item nextProduced;

while (1) {

 while (counter==BUFFER_SIZE)

 ; /* do nothing */

 buffer[in] = nextProduced;

 in = (in+1) % BUFFER_SIZE;

 counter++;

}

• Consumer process

item nextConsumed;

while (1) {

 while (counter==0)

 ; /* do nothing */

 nextConsumed = buffer[out];

 out = (out+1) % BUFFER_SIZE;

 counter--;

}

out in

counter

10/1/2012 CSC 2/456 26

Bounded Buffer Problem
• Shared data

buffer;

• Producer process

while (1) {

 ...

 produce an item in nextp;

 ...

 add nextp to buffer;

 ...

}

• Consumer process

while (1) {

 ...

 remove an item from buffer to nextc;

 ...

 consume nextc;

 ...

}

• Protecting the critical section for safe concurrent execution.
• Synchronizing producer and consumer when buffer is empty/full.

10/1/2012 CSC 2/456 27

Bounded Buffer Solution
• Shared data

buffer;

semaphore full=0;

semaphore empty=n;

semaphore mutex=1;

• Producer process

while (1) {

 ...

 produce an item in nextp;

 ...

 wait(empty);

 wait(mutex);

 add nextp to buffer;

 signal(mutex);

 signal(full);

 ...

}

• Consumer process

while (1) {

 ...

 wait(full);

 wait(mutex);

 remove an item from buffer to nextc;

 signal(mutex);

 signal(empty);

 ...

 consume nextc;

 ...

}

10/1/2012 CSC 2/456 28

Dining-Philosophers Problem

• Philosopher i (1 ≤ i ≤ 5):

while (1) {

 ...

 eat;

 ...

 think;

 ...

}

• eating needs both chopsticks (the left and the right one).

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 8

10/1/2012 CSC 2/456 29

Dining-Philosophers: Possible Solution

• Philosopher i:

 while(1) {

 ...

 wait(chopstick[i]);

 wait(chopstick[(i+1) % 5]);

 eat;
 signal(chopstick[i]);

 signal(chopstick[(i+1) % 5]);

 ...

 think;
 ...

 };

• Shared data:

semaphore chopstick[5];

Initially all values are 1;

Deadlock?

10/1/2012 CSC 2/456 30

Monitors
• High-level synchronization construct that allows the safe sharing

of an abstract data type among concurrent processes.
• Native support for mutual exclusion.

 monitor monitor-name

 {

 shared variable declarations

 procedure body P1 (...) {

 . . .

 }

 procedure body Pn (...) {

 . . .

 }

 {

 initialization code

 }

 }

10/1/2012 CSC 2/456 31

Condition Variables in Monitors
• To allow a process to wait within the monitor, a condition

variable must be declared, as
 condition x, y;

• Condition variable can only be used with the operations
wait and signal.

– The operation
 x.wait();

means that the process invoking this operation is
suspended until another process invokes

 x.signal();

– The x.signal operation resumes exactly one
suspended process. If no process is suspended, then
the signal operation has no effect.

• Unlike semaphore, there is no counting in condition
variables

10/1/2012 CSC 2/456 32

Two Semantics of Condition

Variables
• Hoare semantics:

– p0 executes signal while p1 is waiting p0 immediately yields the
monitor to p1

– The logical condition holds when P1 gets to run

if (resourceNotAvailable()) Condition.wait();

/* now available ... continue ... */

. . .

• Alternative semantics:

– p0 executes signal while p1 is waiting p0 continues to execute,
then when p0 exits the monitor p1 can receive the signal

– The logical condition may not hold when P1 gets to run

– Brinch Hansen (“Mesa”) semantics: p0 must exit the monitor after
a signal

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 9

10/1/2012 CSC 2/456 33

Dining Philosophers Solution
monitor dp {
 enum {THINKING, HUNGRY, EATING} state[5];
 condition self[5];

 void pickup(int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING)
 self[i].wait();
 }

 void putdown (int i) {
 state[i] = THINKING;
 test((i+4)%5);
 test((i+1)%5);
 }

 void test (int i) {
 if (state[(i+4)%5]!=EATING && state[(i+1)%5]!=EATING && state[i] == HUNGRY) {
 state[i] = EATING;
 self[i].signal();
 }
 }

 void init() {
 for (int i=0; i<5; i++)
 state[i] = THINKING;
 }
}

10/1/2012 CSC 2/456 34

Dining Philosophers Alternative

Solution monitor dp {

 enum {thinking, eating} state[5];

 condition cond[5];

 void pickup(int i) {

 while (state[(i+4)%5]==eating || state[(i+1)%5]==eating)

 cond[i].wait();

 state[i] = eating;

 }

 void putdown(int i) {

 state[i] = thinking;

 cond[(i+4)%5].signal();

 cond[(i+1)%5].signal();

 }

 void init() {

 for (int i=0; i<5; i++)

 state[i] = thinking;

 }

}

10/1/2012 CSC 2/456 93

Disclaimer

• Parts of the lecture slides contain original work from Gary
Nutt, Andrew S. Tanenbaum, and Kai Shen. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

