
Operating Systems 10/1/2012 

CSC 256/456 – Fall 2012 1 

10/1/2012 CSC 2/456 1 

Synchronization Principles 

CS 256/456 

Dept. of Computer Science, University 

of Rochester 

10/1/2012 CSC 2/456 2 

Synchronization Principles 
• Background 

– Concurrent access to shared data may result in data 
inconsistency. 

– Maintaining data consistency requires mechanisms 
to ensure the orderly execution of cooperating 
processes. 

 

• The Critical-Section Problem 

– Pure software solution 
– With help from the hardware 

 

• Synchronization without busy waiting (with the support of 
process/thread scheduler) 

– Semaphore 
– Mutex lock 
– Condition variables 
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Bounded Buffer  

• Shared data 
 

typedef struct { ... } item; 

item buffer[BUFFER_SIZE]; 

int in = 0, out = 0; 

int counter = 0; 

• Producer process  
 

item nextProduced; 

while (1) { 

 while (((in+1)%BUFFER_SIZE==out) 

  ; /* do nothing */ 

 buffer[in] = nextProduced; 

 in = (in+1) % BUFFER_SIZE; 

 counter++; 

} 

• Consumer process  
 

item nextConsumed; 

while (1) { 

 while (in==out) 

  ; /* do nothing */ 

 nextConsumed = buffer[out]; 

 out = (out+1) % BUFFER_SIZE; 

 counter--; 

} 

out in 

counter 
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Bounded Buffer  

• Shared data 
 

typedef struct { ... } item; 

item buffer[BUFFER_SIZE]; 

int in = 0, out = 0; 

int counter = 0; 

• Producer process  
 

item nextProduced; 

while (1) { 

 while (counter==BUFFER_SIZE) 

  ; /* do nothing */ 

 buffer[in] = nextProduced; 

 in = (in+1) % BUFFER_SIZE; 

 counter++; 

} 

• Consumer process  
 

item nextConsumed; 

while (1) { 

 while (counter==0) 

  ; /* do nothing */ 

 nextConsumed = buffer[out]; 

 out = (out+1) % BUFFER_SIZE; 

 counter--; 

} 

out in 

counter 



Operating Systems 10/1/2012 

CSC 256/456 – Fall 2012 2 

10/1/2012 CSC 2/456 5 

Bounded Buffer 
• The following statements must be performed atomically: 

 counter++; 

counter--; 

• Atomic operation means an operation that completes in its entirety 
without interruption. 
 

• The statement “counter++” may be compiled into the following 
instruction sequence: 

 register1 = counter; 

 register1 = register1 + 1; 

counter   = register1; 
 

• The statement “counter--” may be compiled into: 

 register2 = counter; 

register2 = register2 - 1; 

counter   = register2; 
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Race Condition 

• Race condition:  

– The situation where several processes access and 
manipulate shared data concurrently.  

– The final value of the shared data and/or effects on 
the participating processes depends upon the order of 
process execution – nondeterminism. 

 
• To prevent race conditions, concurrent processes must be 

synchronized. 
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The Critical-Section Problem 
• Problem context: 

– n processes all competing to use some shared 
data 

– Each process has a code segment, called critical 
section, in which the shared data is accessed. 

 

• Find a solution that satisfies the following: 
1. Mutual Exclusion.  No two processes simultaneously in the critical 

section. 
2. Progress.  No process running outside its critical section may 

block other processes. 
3. Bounded Waiting/Fairness.  Given the set of concurrent 

processes, a bound must exist on the number of times that other 
processes are allowed to enter their critical sections after a 
process has made a request to enter its critical section and 
before that request is granted. 
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Eliminating Concurrency 
• First idea: eliminating the chance of context switch when a 

process runs in the critical section. 

– effective as a complete solution only on a single-
processor machine 

– only for short critical sections 
 

• How to eliminate context switch? 

– software exceptions 
– hardware interrupts 
– system calls 

• Disabling interrupts? 

– not feasible for user programs since they shouldn’t 
be able to disable interrupts 

– feasible for OS kernel programs 
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Critical Section for Two Processes 

• Only 2 processes, P0 and P1 

• General structure of process Pi (other process Pj) 
  do { 
   entry section 
    critical section 
   exit section 
    remainder section 
  } while (1); 
• Processes may share some common variables to synchronize their 

actions. 
 

• Assumption: instructions are atomic and no re-ordering of 
instructions. 
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Algorithm 1 
• Shared variables:  

– int turn; 
initially turn = 0; 

– turn==i  Pi can enter its critical section 
 

• Process Pi 
  do { 

   while (turn != i) ; 

    critical section 
   turn = j; 

    remainder section 
  } while (1); 

 

• Satisfies mutual exclusion, but not progress 
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Algorithm 2 
• Shared variables: 

– boolean flag[2]; 
initially flag[0] = flag[1] = false; 

– flag[i]==true  Pi ready to enter its critical section 
 

• Process Pi 
  do { 

   flag[i] = true; 
  while (flag[j]) ;     
  critical section 

   flag[i] = false; 

    remainder section 
  } while (1); 

 

• Satisfies mutual exclusion, but not progress requirement. 
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Algorithm 3 
• Combine shared variables of algorithms 1 and 2. 

 

• Process Pi 
  do { 

   flag[i] = true; 
  turn = j; 
  while (flag[j] && turn==j) ; 

    critical section 
   flag[i] = false; 

    remainder section 
  } while (1); 

 

• Meets all three requirements; solves the critical-section 
problem for two processes.  called Peterson’s algorithm. 



Operating Systems 10/1/2012 

CSC 256/456 – Fall 2012 4 

10/1/2012 CSC 2/456 13 

Basic Hardware Mechanisms for 

Synchronization 

• Test-and-set – atomic exchange 

• Fetch-and-op (e.g., increment) – returns value and 

atomically performs op (e.g., increments it) 

• Compare-and-swap – compares the contents of two 

locations and swaps if identical 

• Load-locked/store conditional – pair of instructions – 

deduce atomicity if second instruction returns correct 

value 
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Synchronization Using Special 

Instruction: TSL (test-and-set) 

entry_section: 

 TSL R1, LOCK  | copy lock to R1 and set lock to 1 

 CMP R1, #0  | was lock zero? 

 JNE entry_section | if it wasn’t zero, lock was set, so loop 

 RET     | return; critical section entered 

 

exit_section: 

 MOV LOCK, #0  | store 0 into lock 

 RET     | return; out of critical section 

• Does it solve the synchronization problem? 

• Does it work for multiple (>2) processes? 
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Implementing Locks Using 

Test&Set 
• On the SPARC ldstub moves an unsigned byte into the 

destination register and rewrites the same byte in 
memory to all 1s 
_Lock_acquire: 

      ldstub [%o0], %o1 

      addcc %g0, %o1, %g0 

      bne _Lock 

      nop 

fin:  

      jmpl %r15+8, %g0 

      nop 

_Lock_release: 

      st %g0, [%o0] 

      jmpl %r15+8, %g0 

      nop 10/1/2012 CSC 2/456 16 

Using ll/sc for Atomic Exchange 

• Swap the contents of R4 with the memory location 

specified by R1 

 

try: mov R3, R4      ; mov exchange value 

       ll     R2, 0(R1)  ; load linked 

       sc R3, 0(R1)     ; store conditional 

       beqz R3, try      ; branch if store fails 

       mov  R4, R2     ; put load value in R4 
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Solving the Critical Section Problem 

with Busy Waiting  
• In all our solutions, a process enters a loop until the entry 

is granted  busy waiting. 
 

• Problems with busy waiting: 
– Waste of CPU time 
– If a process is switched out of CPU during critical 

section 
• other processes may have to waste a whole CPU 

quantum  
• may even deadlock with strictly prioritized 

scheduling (priority inversion problem) 
• Solution 

– Avoid busy wait as much as possible (yield the 
processor instead). 

– If you can’t avoid busy wait, you must prevent 
context switch during critical section (disable 
interrupts while in the kernel) 10/1/2012 CSC 2/456 18 

Recap 
• Concurrent access to shared data may result in data 

inconsistency – race condition. 
 

• The Critical-Section problem 
– Pure software solution 
– With help from the hardware 

 

• Problems with busy-waiting-based synchronization 
– Waste CPU, particularly when context switch 

occurs while a process is inside critical section 
• Solution 

– Avoid busy wait as much as possible (yield the 
processor instead). 

– If you can’t avoid busy wait, you must prevent 
context switch during critical section (disable 
interrupts while in the kernel) 
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Scheduler-Based Synchronization  
• In all our solutions so far, a process enters a loop until the 

entry is granted  busy waiting. 
 

• Problems with busy waiting: 
– Waste of CPU time 
– If a process is switched out of CPU during critical 

section 
• other processes may have to waste a whole CPU 

quantum  
• may even deadlock with strictly prioritized 

scheduling (priority inversion problem) 
• Solution 

– Avoid busy wait as much as possible (yield the 
processor instead) – scheduler-based synchronization 

– If you can’t avoid busy wait, you must prevent 
context switch during critical section (disable 
interrupts while in the kernel) 10/1/2012 CSC 2/456 20 

Semaphore 
• Synchronization tool that does not 

require busy waiting. 
 

• Semaphore S – integer variable 
which can only be accessed via two 
atomic operations 
 

• Semantics (roughly) of the two 
operations: 

  wait(S) or P(S):   

   wait until S>0; 

  S--; 
 

  signal(S) or V(S):  

   S++; 

• Solving the critical section 
problem: 
 

Shared data: 
 semaphore mutex=1;  
 

Process Pi:  
wait(mutex); 
   critical section 

  signal(mutex); 
   remainder section 
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Semaphore Implementation 
• Define a semaphore as a 

record 
 typedef struct { 

  int value; 

 proc_list *L; 

} semaphore; 
 

• Assume two simple 
operations: 

– block suspends the 
process that invokes it. 

– wakeup(P) resumes the 
execution of a blocked 
process P. 

• Semaphore operations now defined as 
(both are atomic): 

 wait(S): 

 value = (S.value--); 

  if (value < 0) {  

   add this process to S.L; 

  block; 

  } 

 signal(S):  

 value = (S.value++); 

  if (value <= 0) { 

   remove a process P from S.L; 

  wakeup(P); 

  } 

How do we make sure wait(S) and signal(S) are atomic? 
So have we truly removed busy waiting? 
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Mutex Lock (Binary Semaphore) 
• Mutex lock – a semaphore with only two state: locked/unlocked 
 

• Semantics of the two (atomic) operations: 

  lock(mutex):   

   wait until mutex==unlocked; 

  mutex=locked; 
 

  unlock(mutex):  

   mutex=unlocked; 
 

 

• Can you implement mutex lock using semaphore? 
 

• How about the opposite? 
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Implement Semaphore Using Mutex 

Lock 

• Data structures: 

  mutex_lock L1, L2; 

  int C;   
 

• Initialization: 
  L1 = unlocked; 

  L2 = locked; 

  C = initial value of semaphore; 

• wait operation: 
  lock(L1); 

  C --; 

  if (C < 0) { 

   unlock(L1); 

   lock(L2); 

  } 

  unlock(L1); 
 

• signal operation: 
 lock(L1); 

 C ++; 

 if (C <= 0) 

   unlock(L2); 

 else 

   unlock(L1); 
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Classical Problems of 

Synchronization 

• Bounded-Buffer Problem 
 

• Dining-Philosophers Problem 
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Bounded Buffer  

• Shared data 
 

typedef struct { ... } item; 

item buffer[BUFFER_SIZE]; 

int in = 0, out = 0; 

int counter = 0; 

• Producer process  
 

item nextProduced; 

while (1) { 

 while (counter==BUFFER_SIZE) 

  ; /* do nothing */ 

 buffer[in] = nextProduced; 

 in = (in+1) % BUFFER_SIZE; 

 counter++; 

} 

• Consumer process  
 

item nextConsumed; 

while (1) { 

 while (counter==0) 

  ; /* do nothing */ 

 nextConsumed = buffer[out]; 

 out = (out+1) % BUFFER_SIZE; 

 counter--; 

} 

out in 

counter 
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Bounded Buffer Problem 
• Shared data 
 

buffer; 

• Producer process  
 

while (1) { 

 ... 

 produce an item in nextp; 

 ... 

 add nextp to buffer; 

 ... 

} 

• Consumer process  
 

while (1) { 

 ... 

 remove an item from buffer to nextc; 

 ... 

 consume nextc; 

 ... 

} 

• Protecting the critical section for safe concurrent execution. 
• Synchronizing producer and consumer when buffer is empty/full. 
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Bounded Buffer Solution 
• Shared data 
 

buffer; 

semaphore full=0; 

semaphore empty=n; 

semaphore mutex=1; 

• Producer process  
 

while (1) { 

 ... 

 produce an item in nextp; 

 ... 

 wait(empty); 

 wait(mutex); 

 add nextp to buffer; 

 signal(mutex); 

 signal(full); 

 ... 

} 

• Consumer process  
 

while (1) { 

 ... 

 wait(full); 

 wait(mutex); 

 remove an item from buffer to nextc; 

 signal(mutex); 

 signal(empty); 

 ... 

 consume nextc; 

 ... 

} 
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Dining-Philosophers Problem 

• Philosopher i (1 ≤ i ≤ 5): 
 

while (1) { 

 ... 

 eat; 

 ... 

 think; 

 ... 

} 

• eating needs both chopsticks (the left and the right one). 
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Dining-Philosophers: Possible Solution  

• Philosopher i: 
 

  while(1) { 

   ... 

   wait(chopstick[i]); 

   wait(chopstick[(i+1) % 5]); 

   eat; 
   signal(chopstick[i]); 

   signal(chopstick[(i+1) % 5]); 

   ... 

   think; 
   ... 

  }; 

• Shared data:  
 

semaphore chopstick[5]; 

Initially all values are 1; 

Deadlock? 
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Monitors 
• High-level synchronization construct that allows the safe sharing 

of an abstract data type among concurrent processes. 
• Native support for mutual exclusion. 

 

   monitor monitor-name 

   { 

    shared variable declarations 

    procedure body P1 (...) { 

     . . . 

    } 

    procedure body Pn (...) { 

      . . . 

    }     

    { 

     initialization code 

    } 

   } 
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Condition Variables in Monitors 
• To allow a process to wait within the monitor, a condition 

variable must be declared, as 
  condition x, y; 

 

• Condition variable can only be used with the operations 
wait and signal. 

– The operation 
  x.wait(); 

means that the process invoking this operation is 
suspended until another process invokes 

  x.signal(); 

– The x.signal operation resumes exactly one 
suspended process.  If no process is suspended, then 
the signal operation has no effect. 

 

• Unlike semaphore, there is no counting in condition 
variables 
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Two Semantics of Condition 

Variables 
• Hoare semantics:  

– p0 executes signal while p1 is waiting  p0 immediately yields the 
monitor to p1  

– The logical condition holds when P1 gets to run 
 

if (resourceNotAvailable()) Condition.wait(); 

/* now available ... continue ... */ 

. . . 
 

• Alternative semantics: 

– p0 executes signal while p1 is waiting  p0 continues to execute, 
then when p0 exits the monitor p1 can receive the signal 

– The logical condition may not hold when P1 gets to run 

– Brinch Hansen (“Mesa”) semantics: p0 must exit the monitor after 
a signal 
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Dining Philosophers Solution 
monitor dp { 
 enum {THINKING, HUNGRY, EATING} state[5]; 
 condition self[5]; 
 

 void pickup(int i) { 
  state[i] = HUNGRY; 
  test(i); 
  if (state[i] != EATING) 
   self[i].wait(); 
 } 
 
 void putdown (int i) {  
  state[i] = THINKING; 
  test((i+4)%5); 
  test((i+1)%5); 
 } 
 
 void test (int i) {  
  if (state[(i+4)%5]!=EATING && state[(i+1)%5]!=EATING && state[i] == HUNGRY) { 
   state[i] = EATING;  
   self[i].signal(); 
  } 
 } 
 
 

 void init() { 
  for (int i=0; i<5; i++)  
   state[i] = THINKING; 
 } 
} 
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Dining Philosophers Alternative 

Solution monitor dp { 

 enum {thinking, eating} state[5]; 

 condition cond[5]; 
 

 void pickup(int i) { 

  while (state[(i+4)%5]==eating || state[(i+1)%5]==eating) 

   cond[i].wait(); 

  state[i] = eating; 

 } 
 

 void putdown(int i) { 

  state[i] = thinking; 

  cond[(i+4)%5].signal(); 

  cond[(i+1)%5].signal(); 

 } 
 

 void init() { 

  for (int i=0; i<5; i++)  

   state[i] = thinking; 

 } 

} 
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Disclaimer 

• Parts of the lecture slides contain original work from Gary 
Nutt, Andrew S. Tanenbaum, and Kai Shen. The slides are 
intended for the sole purpose of instruction of operating 
systems at the University of Rochester. All copyrighted 
materials belong to their original owner(s).  


