
Operating Systems 9/20/2018

CSC 256/456 1

Programming Assignment #2

• DUE DATE: Monday, October 1 2018

MINI-HOMEWORK DEADLINE: Tuesday Sep 25

• Download assignment files

• Build the Linux kernel

• Boot the QEMU image with the Linux kernel

• Report output of the procedure

– uname -a

1

About QEMU

• A processor emulator

• Emulates code for target CPU on host CPU

Host System

Guest System

2

Why QEMU?

• Allow you to change the kernel

– OS requires privilege to overwrite kernel file

• Isolate kernel changes from the real machine

• Make programming and debugging easier

3

Download the Code

• Get the files you need:

– Use git clone

– Approximate space requirements

– Kernel source and object code: 4 GB

– Everything: About 4 GB of disk space

4

Operating Systems 9/20/2018

CSC 256/456 2

Get It Started!

• Start QEMU and default Debian installation

– cd install

– sh runqemu.sh

• No password

• Use poweroff command to shutdown

• Can kill qemu from different window if kernel

panics

5

Start Up a New Kernel

• Specify path to your kernel bzImage to

runqemu.sh

– sh runqemu.sh linux-3.18-

77/arch/x86_64/boot/bzImage

• When QEMU boots, use uname -a to check if

you booted the correct kernel image

• README.md file contains useful information

6

9/20/2018 CSC 2/456 7

CPU Scheduling

CS 256/456

Department of Computer Science

University of Rochester

9/20/2018 CSC 2/456 8

CPU Scheduling
• Selects from among the processes/threads that are ready to

execute, and allocates the CPU to it

• CPU scheduling may take place at:

1. Hardware interrupt/software exception

2. System calls

• Nonpreemptive:

– Scheduling only when the current process terminates
or not able to run further

• Preemptive:

– Scheduling can occur at any opportunity possible

Operating Systems 9/20/2018

CSC 256/456 3

9/20/2018 CSC 2/456 9

Scheduling Criteria
• Minimize turnaround time – amount of time to execute a

particular process (includes I/O, CPU, memory time, waiting
time in the ready queue)

• Maximize throughput – # of processes that complete their
execution per time unit

• Maximize CPU utilization – the proportion of the CPU that
is not idle

• Minimize response time – amount of time it takes from
when a request was submitted until the first response is
produced (interactivity)

• Waiting time: time spent in the ready queue

• Fairness: avoid starvation

9/20/2018 CSC 2/456 10

First-Come, First-Served (FCFS)

Scheduling

Process CPU Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3

The schedule is:

• Turnaround time for P1 = 24; P2 = 27; P3 = 30

• Average turnaround time: (24 + 27 + 30)/3 = 27

P1 P2 P3

24 27 300

9/20/2018 CSC 2/456 11

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order

P2 , P3 , P1 .

• The schedule is:

• Turnaround time for P1 = 30; P2 = 3; P3 = 6

• Average turnaround time: (30 + 3 + 6)/3 = 13

• Much better than previous case.

• Short process delayed by long process: Convoy effect

P1P3P2

63 300

9/20/2018 CSC 2/456 12

Shortest-Job-First (SJF)

Scheduling
• Associate with each process the length of its CPU time.

Use these lengths to schedule the process with the
shortest CPU time

• Two variations:
– Non-preemptive – once CPU given to the process it

cannot be taken away until it completes
– preemptive – if a new process arrives with CPU time

less than remaining time of current executing process,
preempt

• Preemptive SJF is optimal – gives minimum average
turnaround time for a given set of processes

• Problem:
– don’t know the process CPU time ahead of time

Operating Systems 9/20/2018

CSC 256/456 4

9/20/2018 CSC 2/456 13

Example of Preemptive SJF

Process Arrival Time CPU Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

• SJF (preemptive)

• Average turnaround time = (16 + 5 + 1 +6)/4 = 7

P1 P3P2

42 110

P4

5 7

P2 P1

16

9/20/2018 CSC 2/456 14

Priority Scheduling
• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority

– preemptive

– nonpreemptive

• SJF is a priority scheduling where priority is the predicted
CPU time

• Problem: Starvation – low priority processes may never
execute

• Solution: Aging – as time progresses, increase the priority of
the process

What Happened on the Mars

Pathfinder (1997)?

9/20/2018 CSC 2/456 15

Solution: Priority Inheritance [L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority

Inheritance Protocols: An Approach to Real-Time Synchronization. In IEEE

Transactions on Computers, vol. 39, pp. 1175-1185, Sep. 1990.]

Problem: Priority Inversion

https://cs.unc.edu/~anderson/teach/comp790/papers/mars_pathfinder_long_version.html

https://www.rapitasystems.com/blog/what-really-happened-to-the-software-on-the-mars-pathfinder-spacecraft

9/20/2018 CSC 2/456 16

Round Robin (RR)
• Each process gets a fixed unit of CPU time (time quantum),

usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready
queue

• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits
more than (n-1)q time units

• Performance

– q small  fair, starvation-free, better interactivity
– q large  FIFO
– q must be large with respect to context switch cost,

otherwise overhead is too high

Operating Systems 9/20/2018

CSC 256/456 5

9/20/2018 CSC 2/456 17

Example of RR with Quantum = 20

Process CPU Time

P1 53

P2 17

P3 68

P4 24

• The schedule is:

• Typically, higher average turnaround than SJF, but
better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

9/20/2018 CSC 2/456 18

Multilevel Scheduling

• Ready tasks are partitioned into separate classes:
foreground (interactive)
background (batch)

• Each class has its own scheduling algorithm,
foreground – RR
background – FCFS

• Scheduling must be done between the classes.

– Fixed priority scheduling; (i.e., serve all from
foreground then from background). Possibility of
starvation

– Time slice – each class gets a certain amount of CPU
time which it can schedule amongst its processes; e.g.,

• 80% to foreground in RR

• 20% to background in FCFS

9/20/2018 CSC 2/456 19

Multilevel Feedback Queue

• A process can move between the various queues; aging can

be implemented this way

• Multilevel-feedback-queue scheduler defined by the

following parameters:

– number of queues

– scheduling algorithms for each queue

– method used to determine when to upgrade a process

– method used to determine when to demote a process

– method used to determine which queue a process will

enter when that process needs service

9/20/2018 CSC 2/456 20

Example of Multilevel Feedback

Queue

• Three queues:

– Q0 – RR with time quantum 8 milliseconds

– Q1 – RR time quantum 16 milliseconds

– Q2 – FCFS

• Scheduling

– A new job enters queue Q0 which is served FCFS. When it gains

CPU, job receives 8 milliseconds. If it does not finish in 8

milliseconds, job is moved to queue Q1.

– At Q1 job is again served FCFS and receives 16 additional

milliseconds. If it still does not complete, it is preempted and

moved to queue Q2.

Operating Systems 9/20/2018

CSC 256/456 6

9/20/2018 CSC 2/456 21

Multilevel Feedback Queues

9/20/2018 CSC 2/456 22

Lottery Scheduling

• Give processes lottery tickets for various system
resources

• Choose ticket at random and allow process holding the
ticket to get the resource

• Hold a lottery at periodic intervals

• Properties

– Chance of winning proportional to number of tickets
held (highly responsive)

– Cooperating processes may exchange tickets

– Fair-share scheduling easily implemented by
allocating tickets to users and dividing tickets among
child processes

9/20/2018 CSC 2/456 23

Real-Time Scheduling
• Hard real-time systems – required to complete a critical task

within a guaranteed amount of time

• Soft real-time computing – requires that critical processes
receive priority over less fortunate ones

• EDF – Earliest Deadline First Scheduling

9/20/2018 CSC 2/456 24

Cost of Context Switch

• Direct overhead of context switch

– saving old contexts, restoring new contexts, … …

• Indirect overhead of context switch

– caching, memory management overhead

Operating Systems 9/20/2018

CSC 256/456 7

9/20/2018 CSC 2/456 25

Solaris Dispatch Table

9/20/2018 CSC 2/456 26

Solaris Scheduling

9/20/2018 CSC 2/456 27

Linux Task Scheduling
• Linux 2.5 and up uses a preemptive, priority-based algorithm with

two separate priority ranges:
– A time-sharing class/range for fair preemptive scheduling (nice

value ranging from 100-140)
– A real-time class that conforms to POSIX real-time standard (0-

99)

• Numerically lower values indicate higher priority
• Higher-priority tasks get longer time quanta (200-10 ms)
• One runqueue per processor (logical or physical); load balancing

phase to equally distribute tasks among runqueues
• Runqueue indexed by priority and contains two priority arrays –

active and expired
• Choose task with highest priority on active array; switch active and

expired arrays when active is empty
• Time-sharing tasks are assigned the nice value +/- 5

9/20/2018 CSC 2/456 28

Priorities and Time-slice length

Operating Systems 9/20/2018

CSC 256/456 8

9/20/2018 CSC 2/456 29

List of Tasks Indexed According to

Priorities

9/20/2018 CSC 2/456 30

Multiprocessor Context Switch

• Disabling signals not sufficient

• Acquire scheduler lock when accessing any scheduler
data structure, e.g.,

yield:

disable_signals

acquire(scheduler_lock) // spin lock

enqueue(ready_list, current)

reschedule

release(scheduler_lock)

re-enable_signals

9/20/2018 CSC 2/456 31

CPU Scheduling on Multi-

Processors
• Cache affinity

– keep a task on a particular processor as much as
possible

• Resource contention

– prevent resource-conflicting tasks from running
simultaneously on sibling processors

9/20/2018 CSC 2/456 32

Multiprocessor Scheduling in Linux 2.6
• One ready task queue per processor

– scheduling within a processor and its ready task
queue is similar to single-processor scheduling

• One task tends to stay in one queue

– for cache affinity

• Tasks move around when load is unbalanced

– e.g., when the length of one queue is less than one
quarter of the other

– which one to pick?

• No native support for gang/cohort scheduling or resource-
contention-aware scheduling

Operating Systems 9/20/2018

CSC 256/456 9

9/20/2018 CSC 2/456 33

Multiprocessor Scheduling
• Timesharing

– similar to uni-processor scheduling – one queue of
ready tasks (protected by synchronization), a task
is dequeued and executed when a processor is
available

• Space sharing
• cache affinity

– affinity-based scheduling – try to run each process
on the processor that it last ran on

• caching sharing and synchronization of
parallel/concurrent applications
– gang/cohort scheduling – utilize all CPUs for one

parallel/concurrent application at a time
CPU 0

CPU 1

web server parallel Gaussian
elimination

client/server
game (civ)

9/20/2018 CSC 2/456 34

Anderson et al. 1989 (IEEE TOCS)

• Raises issues of

– Locality (per-processor data structures)

– Granularity of scheduling tasks

– Lock overhead

– Tradeoff between throughput and latency

• Large critical sections are good for best-case

latency (low locking overhead) but bad for

throughput (low parallelism)

9/20/2018 CSC 2/456 75

Disclaimer

• Parts of the lecture slides were derived from those by Kai
Shen, Willy Zwaenepoel, Abraham Silberschatz, Peter B.
Galvin, Greg Gagne, Andrew S. Tanenbaum, and Gary Nutt.
The slides are intended for the sole purpose of instruction
of operating systems at the University of Rochester. All
copyrighted materials belong to their original owner(s).

