
Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 1

DEADLOCK

10/1/2012 CSC 2/456 35 10/1/2012 CSC 2/456 36

The Deadlock Problem
• Definition:

– A set of blocked processes each holding some resources and
waiting to acquire a resource held by another process in the
set

– None of the processes can proceed or back-off (release
resources it owns)

• Examples:

– Dining philosopher problem

– System has 2 memory pages (unit of memory allocation); P1
and P2 each hold one page and each needs another one

– Semaphores A and B, initialized to 1

 P1 P2

wait (A); wait(B)

wait (B); wait(A)

10/1/2012 CSC 2/456 37

Deadlock Characterization
Deadlock can arise if four conditions hold simultaneously:

• Mutual exclusion: only one process at a time can use a
resource

• Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its
task

• Circular wait: there exists a set {P0, P1, …, Pn, P0} of waiting
processes such that
– P0 is waiting for a resource that is held by P1,
– P1 is waiting for a resource that is held by P2,
– …,
– Pn–1 is waiting for a resource that is held by Pn,
– and Pn is waiting for a resource that is held by P0.

10/1/2012 CSC 2/456 38

Methods for Handling Deadlocks

• Ignore the problem and pretend that deadlocks would never
occur

• Ensure that the system will never enter a deadlock state
(prevention or avoidance)

• Allow the system to enter a deadlock state and then
detect/recover

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 2

10/1/2012 CSC 2/456 39

The Ostrich Algorithm

• Pretend there is no problem

– unfortunately they can occur

• Reasonable if

– deadlocks occur very rarely

– cost of prevention is high

• Your typical OSes take this approach

• It is a trade off between

– convenience

– correctness

10/1/2012 CSC 2/456 40

Deadlock Prevention

Attacking the Mutual Exclusion Condition:

• Some devices (such as printer) can be spooled

– only the printer daemon uses printer resource

– thus deadlock for printer eliminated

• Not all devices can be spooled

Restrain the ways requests can be made to break one
of the four necessary conditions for deadlocks.

10/1/2012 CSC 2/456 41

Deadlock Prevention

Attacking the Hold and Wait Condition:

• Require processes to request all resources before starting

• Problems
– may not know required resources at start of run
– also ties up resources other processes could be using

• Variation:
– before a process requests a new resource, it must give

up all resources and then request all resources needed

10/1/2012 CSC 2/456 42

Deadlock Prevention
Attacking the No Preemption Condition:

• Preemption

– when a process is holding some resources and waiting
for others, its resources may be preempted to be used
by others

• Problem

– Many resources may not allow preemption; i.e.,
preemption will cause process to fail

Attacking the Circular Wait Condition:

• impose a total order of all resource types; and require that
all processes request resources in the same order

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 3

10/1/2012 CSC 2/456 43

Deadlock Avoidance
• When a process requests an available resource, system must decide

if immediate allocation leaves the system in a safe state

• System is in safe state if there exists a safe sequence of all
processes

• Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi
can still request can be satisfied by currently available resources +
resources held by all the Pj, with j<i.
– If Pi’s resource needs are not immediately available, then Pi can wait

until all Pj have finished
– When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate
– When Pi terminates, Pi+1 can obtain its needed resources, and so on

10/1/2012 CSC 2/456 44

Deadlock Avoidance (cont.)

• If a system is in safe state 
no deadlocks

• If a system is in unsafe state
 possibility of deadlock

• Deadlock avoidance

– dynamically examines the
resource-allocation state

– ensures that a system
will never enter an unsafe
state

10/1/2012 CSC 2/456 45

Banker’s Algorithm

• Each process must a priori claim the maximum set of resources
that might be needed in its execution

• Safety check

– repeat
• pick any process that can finish with existing available resources;

finish it and release all its resources

• until no such process exists

– all finished → safe; otherwise → unsafe.

• When a resource request is made, the process must wait if:

– enough available resource is not available for this
request

– granting the request would result in an unsafe system
state

10/1/2012 CSC 2/456 46

Example of Banker’s Algorithm
• 5 processes P0 through P4

• 3 resource types: A (10 instances), B (5 instances), and
C (7 instances)

• Snapshot at time T0:
 Allocation MaxNeeds Available
 A B C A B C A B C
 P0 0 1 0 7 5 3 3 3 2
 P1 2 0 0 3 2 2
 P2 3 0 2 9 0 2
 P3 2 1 1 2 2 2
 P4 0 0 2 4 3 3

• Is this a safe state?
• Can request for (1,0,2) by P1 be granted?

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 4

10/1/2012 CSC 2/456 47

Methods for Handling Deadlocks

• Ignore the problem and pretend that deadlocks would never
occur

• Ensure that the system will never enter a deadlock state

• Allow the system to enter a deadlock state and then
detect/recover

10/1/2012 CSC 2/456 48

Single Instance of Each Resource

Type
• Maintain wait-for graph

– Nodes are processes.

– Pi  Pj if Pi is waiting for Pj.

• Periodically search for a cycle in the graph.

Resource-Allocation Graph Corresponding wait-for graph

10/1/2012 CSC 2/456 49

Multiple Instances of Each Resource

Type

• When there are several instances of a resource type

– cycle detection in wait-for graph is not sufficient

• Deadlock detection is very similar to the safety check in the
Banker’s algorithm

– just replace the maximum needs with the current
requests

10/1/2012 CSC 2/456 50

Recovery from Deadlock
• Recovery through preemption

– take a resource from some other process
– depends on nature of the resource

• Recovery through rollback

– checkpoint a process state periodically
– rollback a process to its checkpoint state if it is found

deadlocked

• Recovery through killing processes

– kill one or more of the processes in the deadlock cycle
– the other processes get its resources

• In which order should we choose process to kill?

Operating Systems 10/1/2012

CSC 256/456 – Fall 2012 5

10/1/2012 CSC 2/456 51

Disclaimer

• Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Andrew
S. Tanenbaum, Willy Zwaenepoel, and Gary Nutt. The slides
are intended for the sole purpose of instruction of
operating systems at the University of Rochester. All
copyrighted materials belong to their original owner(s).

