
Operating Systems 12/4/2007

CSC 256/456 - Spring 2006 1

12/4/2007 CSC 2/456 1

Multiprocessor Operating Multiprocessor Operating
SystemsSystems

CS 256/456

Dept. of Computer Science, University
of Rochester

12/4/2007 CSC 2/456 2

Multiprocessor HardwareMultiprocessor Hardware
• A computer system in which two or more CPUs share full

access to the main memory

• Each CPU might have its own cache and the coherence among
multiple caches is maintained

– write operation by a CPU is visible to all other CPUs

– writes to the same location is seen in the same order by
all CPUs (also called write serialization)

– bus snooping and cache invalidation

… … …
Cache

CPU

Cache

CPU

Cache

CPU

Memory

Memory bus

12/4/2007 CSC 2/456 3

Multiprocessor ApplicationsMultiprocessor Applications
• Multiprogramming

– Multiple regular applications running concurrently

• Concurrent servers

– Web servers, … …

• Parallel programs

– Utilizing multiple processors to complete one task
(parallel matrix multiplication, Gaussian elimination)

– Strong synchronization

x =A B C

12/4/2007 CSC 2/456 4

SingleSingle-- processor OS vs. Multiprocessor OS vs. Multi-- processor processor
OSOS

• Single-processor OS

– easier to support kernel synchronization
• fine-grained locking vs. coarse-grained locking

• disabling interrupts to prevent concurrent executions

– easier to perform scheduling
• which to run, not where to run

• Multi-processor OS

– evolution of OS structure

– synchronization

– scheduling

Operating Systems 12/4/2007

CSC 256/456 - Spring 2006 2

12/4/2007 CSC 2/456 5

Multiprocessor OSMultiprocessor OS

• Each CPU has its own operating system

– quick to port from a single-processor OS

• Disadvantages

– difficult to share things (processing cycles, memory,
buffer cache)

Bus

12/4/2007 CSC 2/456 6

Multiprocessor OS Multiprocessor OS –– Master/SlaveMaster/Slave

Bus

• All operating system functionality goes to one CPU

– no multiprocessor concurrency in the kernel

• Disadvantage

– OS CPU consumption may be large so the OS CPU
becomes the bottleneck (especially in a machine with
many CPUs)

12/4/2007 CSC 2/456 7

Multiprocessor OS Multiprocessor OS –– Shared OSShared OS

• A single OS instance may run on all CPUs

• The OS itself must handle multiprocessor synchronization

– multiple OS instances from multiple CPUs may access
shared data structure

Bus

12/4/2007 CSC 2/456 8

Synchronization (Fine/CoarseSynchronization (Fine/Coarse-- Grain Grain
Locking)Locking)

• Fine-grain locking – only locking necessary for critical
section

• Coarse-grain locking – locking large piece of code, much of
which is unnecessary
– simplicity, robustness
– prevent simultaneous execution

Simultaneous execution is not possible on uniprocessor
anyway

Operating Systems 12/4/2007

CSC 256/456 - Spring 2006 3

12/4/2007 CSC 2/456 9

Multiprocessor SchedulingMultiprocessor Scheduling
• Timesharing

– similar to uni-processor scheduling – one queue of
ready tasks (protected by synchronization), a task
is dequeued and executed when a processor is
available

• Space sharing
• cache affinity

– affinity-based scheduling – try to run each process
on the processor that it last ran on

• caching sharing and synchronization of
parallel/concurrent applications
– gang/cohort scheduling – utilize all CPUs for one

parallel/concurrent application at a time
CPU 0

CPU 1

web server parallel Gaussian
elimination

client/server
game (civ)

12/4/2007 CSC 2/456 10

Resource ContentionResource Contention-- Aware Aware
Scheduling IScheduling I

• Hardware resource sharing/contention in multi-processors

– SMP processors share memory bus bandwidths

– Multi-core processors share L2 cache

– SMT processors share a lot more stuff

• An example: on an SMP machine

– a web server benchmark delivers around 6300
reqs/sec on one processor, but only around 9500
reqs/sec on an SMP with 4 processors

• Contention-reduction scheduling

– co-scheduling tasks with complementary resource
needs (a computation-heavy task and a memory
access-heavy task)

– In [Fedorova et al. USENIX2005], IPC is used to
distinguish computation-heavy tasks from memory
access-heavy tasks

12/4/2007 CSC 2/456 11

Resource ContentionResource Contention-- Aware Aware
Scheduling IIScheduling II

• What if contention on a resource is unavoidable?

• Two evils of contention

– high contention ⇒⇒⇒⇒ performance slowdown

– fluctuating contention ⇒⇒⇒⇒ uneven application progress
over the same amount of time ⇒⇒⇒⇒ poor fairness

• [Zhang et al. HotOS2007] Scheduling so that:

– very high contention is avoided

– the resource contention is kept stable

CPU 0

CPU 1

high resource
usage

low resource
usage

high resource
usage

low resource
usage

medium resource
usage

medium resource
usage

12/4/2007 CSC 2/456 12

Anderson et al. 1989 (IEEE TOCS)Anderson et al. 1989 (IEEE TOCS)

• Raises issues of

– Locality (per-processor data structures)

– Granularity of scheduling tasks

– Lock overhead

– Tradeoff between throughput and latency
• Large critical sections are good for best-case

latency (low locking overhead) but bad for
throughput (low parallelism)

Operating Systems 12/4/2007

CSC 256/456 - Spring 2006 4

12/4/2007 CSC 2/456 13

Performance MeasuresPerformance Measures

• Latency

– Cost of thread management under the best
case assumption of no contention for locks

• Throughput

– Rate at which threads can be created, started,
and finished when there is contention

12/4/2007 CSC 2/456 14

OptimizationsOptimizations

• Allocate stacks lazily

• Store deallocated control blocks and stacks in
free lists

• Create per-processor ready lists

• Create local free lists for locality

• Queue of idle processors (in addition to queue of
waiting threads)

12/4/2007 CSC 2/456 15

Ready List ManagementReady List Management

• Single lock for all data structures
• Multiple locks, one per data structure
• Local freelists for control blocks and stacks,

single shared locked ready list
• Queue of idle processors with preallocated

control block and stack waiting for work
• Local ready list per processor, each with its own

lock

12/4/2007 CSC 2/456 16

Multiprocessor Scheduling in Linux 2.6Multiprocessor Scheduling in Linux 2.6
• One ready task queue per processor

– scheduling within a processor and its ready task
queue is similar to single-processor scheduling

• One task tends to stay in one queue

– for cache affinity

• Tasks move around when load is unbalanced

– e.g., when the length of one queue is less than one
quarter of the other

– which one to pick?

• No native support for gang/cohort scheduling or resource-
contention-aware scheduling

Operating Systems 12/4/2007

CSC 256/456 - Spring 2006 5

12/4/2007 CSC 2/456 17

History of LinuxHistory of Linux
• Linux is a modern, open-source operating system that is

mostly POSIX-compliant.

• First developed as a small but self-contained kernel in 1991
by Linus Torvalds, with the major design goal of UNIX
compatibility.

• Collaboration by many users all around the world,
corresponding almost exclusively over the Internet.

12/4/2007 CSC 2/456 18

Linux Kernel/System/DistributionLinux Kernel/System/Distribution
• Kernel

– the OS code that runs in privileged mode
• System

– essential system components, but runs in user mode
– compilers, system libraries

• Linux distribution
– extra system-installation and management utilities
– precompiled and ready-to-install tools & packages
– popular distributions: Redhat/Fedora, Debian, SuSE, Caldera, …

Linux kernel and loadable kernel modules

compilers and
system libraries

system management
programs

user
utilities

user-level application programs

12/4/2007 CSC 2/456 19

Processes and ThreadsProcesses and Threads

• Linux uses the same internal representation for
processes and threads; a thread is simply a new
process that happens to share the same
address space as its parent

• A distinction is only made when a new thread is
created by the clone system call

– a process is a task with its own entirely new
context (including address space)

– a thread is a task with its own identity, but not
a dedicated address space 12/4/2007 CSC 2/456 20

Linux Task SchedulingLinux Task Scheduling
• Linux uses two task-scheduling classes:

– time-sharing and real-time

• A prioritized, epoch-based algorithm for time-sharing
– Each task has a static credit (default=20) and a

dynamic quantum
– Scheduling is prioritized based on quantum at the

beginning of each epoch; each tasks runs its quantum
length of time

– The initial process quantum at its first epoch is credit
– An epoch ends when no runnable tasks have any

quantum; new quantum is calculated for new epoch

– This quantum crediting system automatically prioritizes
interactive or I/O-bound tasks.

priority
2

quantum remaining
 epoch newin quantum initial +=

Operating Systems 12/4/2007

CSC 256/456 - Spring 2006 6

12/4/2007 CSC 2/456 21

Linux Task Scheduling: O(1) SchedulerLinux Task Scheduling: O(1) Scheduler
• Linux O(1) scheduler

– the scheduling overhead is constant, which is independent of the
number of processes in the system

• Main operations in Linux scheduler

– schedule(), epoch transition

• Using two priority arrays

– one for active array, one for those who have used up their entire
quantum (called “expired”)

– array index indicates the priority (multiple tasks with the
same priority chained in a link list pointed to from the array
index)

• O(1) scheduling

– fixed number of priorities (bit search instruction like for speed)

• O(1) epoch transition

– swap active and expired arrays.

12/4/2007 CSC 2/456 22

Interrupt HandlingInterrupt Handling
• Interrupt handling is usually atomic

– new interrupts are disabled during the handling of an
interrupt

• Linux’s kernel allows long interrupt service routines to run
without having interrupts disabled for too long

• Interrupt service routines are separated into a top half
(urgent) and a bottom half (not so urgent)

– The top half runs with interrupts disabled

– The bottom half is run later, with interrupts enabled

– Bottom halves run one by one (they do not interrupt
each other)

12/4/2007 CSC 2/456 23

Interrupt Protection LevelsInterrupt Protection Levels

• Each level may be interrupted by code running at
a higher level, but will never be interrupted by
code running at the same or a lower level.

top-half interrupt handlers

bottom-half interrupt handlers

user-mode programs and system calls

12/4/2007 CSC 2/456 24

Synchronization in LinuxSynchronization in Linux

• Per-CPU variables to avoid synchronization

• Atomic variables (non-blocking)

• Read-copy-update (non-blocking)

• Spin-locks – basic, r/w (blocking)

• Semaphores (sleeping)

• Local interrupt disabling

Goal: Maximize concurrency

Operating Systems 12/4/2007

CSC 256/456 - Spring 2006 7

12/4/2007 CSC 2/456 25

Managing Physical MemoryManaging Physical Memory
Keeping track of free memory
• Linux page allocator can allocate ranges of physically-

contiguous pages on request.
• The allocator uses a buddy-heap algorithm to keep track of

available physically-contiguous memory regions

– A free region list is maintained for each region size: 4KB,
8KB, 16KB, 32KB, … …

– A large region can be split into multiple smaller regions if
necessary

12/4/2007 CSC 2/456 26

Memory Page ReplacementMemory Page Replacement
• All memory pages are managed together

– stack/heap/code, …

– file system buffer cache

• Memory pages are managed in two LRU lists: active list and
inactive list

– each LRU list is managed using a CLOCK (second-
chance) LRU approximation

– pages evicted from the active list go to the inactive
list; pages evicted from the inactive list are out of the
system

– pages in the inactive list may be promoted to the
active list under certain circumstances

12/4/2007 CSC 2/456 27

Ext2fs File SystemExt2fs File System
• Disks are divided into contiguous block groups

– the hope is that there is not much seeking within
each block group

– there is a section for inodes in each block group

– the FS tries to keep inodes and corresponding file
blocks in the same block group

• Ext2fs tries to place logically adjacent blocks of a file into
physically adjacent blocks on disk

– with the help of the free block bitmap

• Ext3fs supporting file system journaling

12/4/2007 CSC 2/456 28

The Linux /proc File SystemThe Linux /proc File System
• The proc file system does not store data, rather, its

contents are computed on demand according to user file I/O
requests

– When data is read from one of these files, proc collects
the appropriate information, formats it into text form
and places it into the requesting process’s read buffer

Operating Systems 12/4/2007

CSC 256/456 - Spring 2006 8

12/4/2007 CSC 2/456 29

Prefetching and I/O SchedulingPrefetching and I/O Scheduling
• File prefetching/read-ahead

– prefetching sequentially when the I/O access is
considered as sequential

– how to detect sequential pattern?

• Disk I/O scheduling
– an elevator-style seek-reduction scheduling
– non-work conserving scheduling: anticipatory scheduling
– deadline to prevent starvation

12/4/2007 CSC 2/456 30

Robustness and DependabilityRobustness and Dependability
• Modern operating systems are complex and potentially

contain bugs

– Linux is no exception – including memory errors,
synchronization errors (races, deadlocks, …), etc.

• A study [Chou et al. sosp2001] finds that:

– device drivers are 3-7 times more error-prone

– average bugs live for 1.8 years

– errors cluster significantly

12/4/2007 CSC 2/456 31

DisclaimerDisclaimer

• Parts of the lecture slides contain original work by Andrew
S. Tanenbaum. The slides are intended for the sole purpose
of instruction of operating systems at the University of
Rochester. All copyrighted materials belong to their
original owner(s).

