Operating Systems

Review

CS 256/456

Dept. of Computer Science, University
of Rochester

12/13/2018 CSC 2/456 31

What is an Operating System?

* An extended machine
* Hides the messy details about hardware resources

* Presents users with a resource abstraction that is easy to use

* A resource manager

+ Allows multiple users/programs to share resources fairly,
efficiently, ..

12/13/2018 CSC 2/456 32

Overall Picture

* OS components
- Process Management and Scheduling
- Synchronization
- Memory Management
I/0 System Management
- File and Secondary-Storage Management

+ OS structure/organization
- Monolithic kernel
- Micro-kernel (and exokernel)
- Virtual machines

12/13/2018 CSC 2/456 33

Topics Covered

Processes and threads
Signals, IPC
Synchronization
— Classical problems and synchronization primitives, deadlock
— Synchronization within the kernel
— Transactions, lock-free algorithms
CPU scheduling
— Uniprocessor and multiprocessor scheduling
— Real-time and user-level scheduling
Memory management
— Virtual memory
— Replacement policies
— Single address space
I/O systems and storage devices
File systems
— Traditional and distributed file systems
Security and protection
Multiprocessor Oses — HPC issues
Operating system structure, microkernels
Virtual machines
Real-time, accelerator management

12/13/2018 CSC 2/456 34

CSC 256/456

Operating Systems

Processes & Threads

+ Process
- Process concept
- OS data structure for a process
- Operations on processes

+ Thread
- Thread concept
- Compared with process
+ less context switch overhead

* more efficient synchronization between
threads

- User/kernel threads

12/13/2018 CSC 2/456

CPU Schedulin

Selects from among the processes/threads that are ready to
execute, and allocates the CPU to it.

CPU scheduling may take place at:
1. Hardware interrupt/software exception.
2. System calls.

Scheduling schemes:

- FCFs

- Shortest job first
- Priority scheduling
- Round-robin

CPU scheduling in practice - concurrency, affinity, and data
structures

Real-time scheduling - worst-case execution fime, rate
monotonic, earliest deadline first

12/13/2018 CSC 2/456 36

Multiprocessor/Multicore

* Priority inversion

* Information leakage at chip level
+ Denial of service attack at chip level

Fairness and Security Concerns

» Poor fairness among competing applications

CSC 256/456

Page Coloring

Classic technique to reduce cache miss, Thread A's footprint
now used by OS to manage cache Memory page
partitioning

Al

o A2
Partition cache at coarse

. A3

granularity, Thread A {

No need for hardware L

support Thread B { e
12/13/2018 CSC 2/4s6 ;an‘ebauéécheaw %

Operating Systems

Synchronization

Concurrent access to shared data may result in race
condition

The Critical-Section problem
- Pure software solution
- With help from the hardware

Synchronization without busy waiting

High-level Synchronization

Classic synchronization problems
- Bounded buffer (producer/consumer)
- Dining philosopher

High-level synchronization primitives
- Monitor
- Condition variables

12/13/2018 CSC 2/456 40

- Semaphore
- Mutex lock
12/13/2018 CSC 2/456 39
Deadlocks
Deadlocks

- Four criteria: Mutual exclusion, Hold and wait, No
preemption, Circular wait

Handling deadlocks:
- Ignore the problem and pretend that deadlocks will
never occur
- Ensure that the system will never enter a deadlock
state
+ deadlock prevention
+ deadlock avoidance
- Allow the system fo enter a deadlock state and then
detect/recover.

12/13/2018 CSC 2/456 41

CSC 256/456

Virtual Memory

Virtual memory - separation of user logical memory from
physical memory

- Only part of the program address space needs to be in
physical memory for execution

- Copy-on-write: allows for more efficient process
creation

- Memory-mapped I/0
Page replacement algorithm: the algorithm that picks the

victim page
- FIFO, Optimal, LRU, LRU approximation

12/13/2018 CSC 2/456 42

Operating Systems

Memory Management

Address binding
- compile-time, load-time, execution-time
- Logical vs. physical address

Memory management

- spoc)e allocation & address translation (memory mapping
unit

Paging (hon-contiguous allocation)
- address franslation: page tables and TLB
- hierarchical page tables, inverted/hashed page tables

Segmentation
- compile time: segmented logical addresses
- execution time: franslated into physical addresses

12/13/2018 CSC 2/456 43

I/O & Storage Systems

I/0:
- interrupt-driven

Disk Structure

Disk Scheduling
- FCFS, SSTF, elevator, anticipatory scheduling

12/13/2018 CSC 2/456 44

File Systems

File system interface
- files/directories
- access models and operations

Space allocation for disk files

- contiguous allocation, linked allocation, indexed
allocation

- space efficiency and access efficiency
(random/sequential)

Free space management

- bit map, linked list,

I/0 buffer management
- caching and prefetching

12/13/2018 CSC 2/456 45

CSC 256/456

Log-Structured File Systems

With CPUs faster, memory larger

- buffer caches can also be larger

- most of read requests can come from the memory cache
- thus, most disk accesses will be writes

- poor disk performance when most writes are small

LFS Strategy [Rosenblum&Ousterhout SOSP1991]
- structures entire disk as a log
- always write o the end of the disk log

- when updates are needed, simply add new copies with
updated content; old copies of the blocks are still in the
earlier portion of the log

- periodically purge out useless blocks
12/13/2018 CSC 2/456 46

Operating Systems

Log-structure File Systems and Solid Security
State Drives

User authentication
- UNIX user authentication and attacks

* Log-structure file systems
- Login spoofing

— Improve individual disk write throughput when

using large caches for reads . Buffer overflow attack
— Improve reliability and recovery overhead via
journaling + Viruses and anti-virus techniques

» Solid State Drives
— Fast reads, random access
— Slow write/erase (in blocks) cycle
— Finite number of writes requiring wear leveling

Disk encryption and data security

1211312018 CSC 2/456 47 1211312018 CSC 2/456

Protection Operating Systems Protection

Operating system consists of a collection of objects,

hardware or software (e.g., files, pr‘lnTer‘S) Goal: Ensure data confidentiality + data integrity + systems availability

Protection problem - ensure that each objecf is accessed Protection domain = the set of accessible objects + access rights

correctly and only by those processes that are allowed to do
so

Access conftrol lists & capabilities

File A File C | printer 1) File E

[RW] Rl w [RX]

File B Fite-D Eile'F

RWX RW R

[Dom i {]Domai Dor[ne!i
nil n2 n3

50

12/13/2018 CSC 2/456 49

CSC 256/456

Operating Systems

Private Virtual Address Space

Private Virtual
) addr space .
Private Page B Physical
Each process has a private table addr space
virtual address space

— Set of accessible objects: virtual
pages mapped

— Access rights: access Y
permissions to each virtual page --- ‘\
Recorded in per-process page P1 RW \

\
table))) RW \‘\
— Virtual-to-physical translation

P2 \
\
+ access permissions P3 RW \

P4 RW

Most common memory
protection mechanism in current

51

Challenges of Sharing Memory

Difficult to share pointer-based

data structures Process A Process B
— Data may map to different virtual virtual addr virtual addr
addresses in different address SPace physical SPace
spaces addr

space

N

Challenges of Sharing Memory

Potential duplicate virtual-to-
physical translation information for
shared memory
— Page table is per-process at Process A Physical Process B
page granularity page table addr page table
— Single copy of the physical memory, space
multiple copies of the mapping info
(even if identical)

53

CSC 256/456

52
Single Address Space and
Protection
* Protection domain = set of accessible pages + access permissions
« Capability list
+ Each (domain, page) pair is unique
— Access rights associated with (domain, page)
Page | Page 2 | Page 3 | Page 4 | Page 5 | Page 6
1
Domain R RW RWX
A
Domain R-X R R R
B
Domain | RWX | R-X RW
©
54

Operating Systems

Protection Lookaside Buffer

* One implementation of domain-
page model ’ Virtual ‘ Physical
. . age age
» Translation lookaside buffer (TLB) 'i g pag
— On-chip cache of page table
— Virtual-to-physical translation
information + access permissions
+ Protection Lookaside buffer (PLB) e
— Only records access permissions

— Translation information is saved
separately

Access
rights

Page
Table

55

Overall Picture

+ OS components

Process Management and Scheduling
Synchronization

Memory Management

I/0 System Management

File and Secondary-Storage Management

+ OS structure/organization
- Monolithic kernel
- Micro-kernel (and exokernel)
- Virtual machines

12/13/2018 CSC 2/456 56

Microkernel

Microkernel structure:

- Moves functionalities from the kernel into “user” space.
Benefits:

- Modular design

- More reliable (less code is running in kernel mode)
Disadvantage:

- Tend to have more frequent domain crossings
(performance)
Two types of micro-kernels:
- Running user-level OS in a trusted server - Mach

- Running user-level OS within untrusted user processes -
Exokernel

- more secure (less trusted code)
* more flexibility (user-level customization is easy)

12/13/2018 CSC 2/456 57

CSC 256/456

Virtual Machines

* Virtualization: provides isolated duplicates of the
real machine

user
user user user user user | programs
programs programs | programs | programg |programs
on native 0s
0s
0s 0s 0s VMM
0s VM monitor native OS
hardware hardware hardware
Non-VM Native VM Hosted VM

Need architecture where “sensitive” instructions are a subset of “privileged” instructions

12/13/2018 CSC 2/456 58

Operating Systems

VM vs. Container vs. Unikernel Multiprocessor OS
\QWi“dOWS: Linux CPU 1 CPU 2 CPU 3 CPU 4 Memory 1o
. 1 2
MirageOsS, HalVM, etc Has Has Has Has Data
VM VM Docker % private private private private Dém 3
i} os os os os D i
L] | I | I |
AN
Bus
+ Boch CPU has its own aperating systen
- quick to port from a single-processor OS
Virtual Machines Linux Containers Unikernels .
+ Disadvantages
Container shares, Unikernel shrinks. - difficult to share things (processing cycles, memory,
buffer cache)
12/13/2018 CSC 2/456 60

Multiprocessor OS — Master/Slave Multiprocessor OS — Shared OS

CPU 1 CPU 2 CPU 3 CPU 4 Memory 1o CPU1 CPU2 CPU3 CPU4 Memory lle]
Master Slave Slave Slave User Runs Runs Runs Runs
runs runs user runs user runs user piocesses users and users and users and users and
0s processes| [processes| processes| os shared QS| [shared OS shared OS| [shared OS] oS O
3\

| | | N | | Il
\BUS \ \Locks

All operating system functionality goes to one CPU Bus
- no multiprocessor concurrency in the kernel A single OS instance may run on all CPUs
Disadvantage + The OS itself must handle multiprocessor synchronization
- multiple OS instances from multiple CPUs may access

- OS CPU consumption may be large so the OS CPU
becomes the bottleneck (especially in a machine with

many CPUs)
CSC 2/456 61 12/13/2018 CSC 2/456

shared data structure

62

12/13/2018

CSC 256/456

Operating Systems

Multiprocessor OSes

* [ssues

— Synchronization
 E.g., Linux kernel synchronization issues

— Scheduling
 Time sharing
» Space sharing
» Cache affinity

» Cache sharing and application coordination:
gang/cohort scheduling

12/13/2018 CSC 2/456 63

Distributed File Systems: Issues

» Naming and transparency (location transparency versus location
independence)

— Host:local-name
— Attach remote directories (mount)
— Single global name structure
* Remote file access
— Remote-service mechanism
« Stateful vs. stateless
— Caching and coherence
« Cache update policy (write through vs. delayed write)
« Client-initiated vs. server-initiated
* Reliability and file replication
— Naming transparency
— Availability vs. consistency

12/13/2018 CSC 2/456 64

The Google File System

» Large, distributed, data-intensive workload

» Large streaming read/write with mainly file
appends

» Centralized management of file metadata
» Data chunked (64MB) across servers
+ Fault tolerance via replication

12/13/2018 CSC 2/456 65

CSC 256/456

Singularity

» Software/language-based protection and
isolation

— Removes need for hardware protection
mechanisms

— Moves error detection closer to design time

— Single address space

— Requires all processes to use type-safe
language

— All communication via messages

12/13/2018 CSC 2/456 66

Operating Systems

operating systems
* Requirements: low latency, fairness
+ Solutions:

memory access

share exceeded

CSC 2/456

Managing Accelerators (GPU)

» Challenges: non-preemptible, do not run

— Control GPU usage by managing direct

 Disengage OS when processes use fair share
» Trap to OS (by disallowing direct access) when fair

— File system interface using polling on memory

67

Energy (and other) Resource
Management

» Components of energy: static and dynamic
+ Critical resource identification: memory, CPU
* Knobs:

— Ready queue management (control co-
runners)

— CPU dynamic voltage and frequency
adjustment

— Time slice adjustment
— Duty cycle modulation

CSC 2/456 68

Topics Covered

Processes and threads
Signals
Synchronization
— Classical problems and synchronization primitives
— Synchronization within the kernel
CPU scheduling
— Uniprocessor and multiprocessor scheduling
— Real-time and user-level scheduling
Memory management
— Virtual memory
— Replacement policies
— Page coloring and address translation
1/0 systems and storage devices
File systems
— Traditional and distributed file systems
Security and protection
Multiprocessor Oses
Software-isolated processes
Virtual machines
Real-time, accelerator management

12/13/2018 CSC 2/456

69

CSC 256/456

10

