
Disengaged Scheduling
For

Fair, Protected Access to
Fast Computational Accelerators

Amir Taherin

Prof. Dwarkadas

CSC 456: Operating Systems Course

Fast Computational Accelerators
Introduction

Example: GPU
Nvidia GTX 1070

First: 1970 in arcade games

In the home market, the Atari 2600 in 1977
used a video shifter called the Television
Interface Adaptor

Nvidia GeForce 3 : 2001

https://wccftech.com/nvidia-gtx-1080-
gp104-die-shot/

https://Wikipedia.com

https://wccftech.com/nvidia-gtx-1080-gp104-die-shot/
https://wikipedia.com/

Today
Mobile SoCs

Iphone Xs Max

A12 Bionic chip

Apple-designed 64-bit ARMv8.3-A 6-Core CPU

Apple-designed 4-Core GPU

Shortcoming

• Operating System has no control over hardware accelerators.

• Why?
• HIGH Overhead

• e.g., Direct GPU accesses from user
• Management in OS requires Interrupts

• Interrupts are too costly

• GPUs are Black-Boxes for the OS
• No sufficient information from vendors

GPUs: Black Boxes [USENIX 2013]

• Today’s typical GPU architecture
• Device

• Driver

• User-level libraries

• Open Documents:
• High level programing model

• Library interface

• Architectural characteristics
• Performance tuning and high-level

programing

How are GPUs used?

• For minimal overhead on very low latency GPU requests
• User-level library

• Frequently communicates directly with the device (in both directions)

• Memory-mapped buffers and registers are used

• Bypassing the OS kernel

• Malicious application:
• Obtain an unfair share of GPU resources (cycles, memory, and bandwidth)

• Kernel has no way to coordinate GPU activity with other aspects of resource
management in pursuit of system-wide objectives.

We Need More Information on GPUs

• Protected OS-level resource management
• A pressing need

• To satisfy this need:
• The kernel must be able to:

• Identify and delay GPU request submissions

• Tell when requests complete

• Need for clean interface to expose this information
• Hopefully be provided by vendors in the near future

Open The Black-Box
Previous Work [USENIX 2013]

“Model the black-box stack as a state
machine that captures only as much
as we need to know to manage
interactions with the rest of the
system.”
High-Level Solution

Language Words

State Machine Case
Study

Lesson Learned

• State Machine:
• Request handling by the system

• Interface for more direct involvement of the operating system

• NOTE: We can intercept and intercede on request making and
request-completion events
• Make a scheduling decision that reflects its own priorities and policy.

Scheduling for Fair, Protected
Access to Fast Computational
Accelerators
Problem Statement

ASPLOS 2014

Prerequisites

• Future Microprocessors: Highly Heterogeneous
• Hardware accelerators

• Current OS: No control over accelerators
• Application with larger requests: receives more time

• Greedy application hog the GPU

• Malicious application may launch a denial-of-service (DoS) attack

Modern Accelerator Systems

• Two major challenges:

• First
• Low Latency

• Bypassing the OS
• No resource management

• Second
• NO information on accelerators

• Hardware interface for accelerators
• Hidden from programmers

Task

Operating System

GPU

Fast, Direct
Access to GPU

How are GPUs Used?

Memory Mapping

Timeslice with Overuse Control

Task #1 Task #2 Task #3

Operating System

GPU

Trap Acceleration
Request

Overhead

Thousands of
cpu cycles

Fast, Direct
Access to GPU
~ 350 cycles

Timeslice Scheduler

Trap Acceleration
Request

Trap Acceleration
Request

Timeslice with Overuse Control

• Fairness:
• Upon the completion of requests that overrun the end of a timeslice

• Deduct their excess execution time from future timeslices of the submitting
task

• Charge the token holder
• Sometimes: skip the task’s next turn(s)

Timeslice with Overuse Control: prototype

• Protection against over-long requests
• Killing the offending task

• Leave the accelerator in a clean state
• Let the existing accelerator stack follow its normal exit protocol

• Returning occupied resources back to the available pool

• Cleanup depends on (undocumented) accelerator features
• It appears to work correctly on modern GPUs

Timeslice with Overuse Control: Limitations

• Two efficiency drawbacks
1. Interrupt-based requests

• Significant overhead on fast accelerators

2. Not work-conserving:
• The accelerator may be idled during the timeslice of a task that temporarily has no

requests

• e.g., Other tasks are waiting for accelerator access

Disengagement
Solution

Disengaged Timeslice scheduler: tackles the overhead problem
Disengaged Fair Queueing scheduler: tackles the problem of resource idleness

High-Level Overview

• key idea, called Disengagement
• OS resource scheduler

• Maintain fairness
• Only: Interceding on a small number of acceleration requests

• How? => Disabling the direct mapped interface and intercepting resulting faults

• Majority of requests
• Unhindered direct access

Disengaged Timeslice Scheduler

Task #1 Task #2 Task #3

Operating System

GPU

Memory Mapping Memory Mapping Memory Mapping

Fast, Direct
Access to GPU

Disengaged Timeslice Scheduler

Disengaged Timeslice Scheduler

• Difference:
• Direct, unmonitored access
• For token holder, In its Timeslice

• NOTE: Interception is not required for all requests

• When passing the token between tasks
• OS updates page tables to enable or disable direct access
• Largely disengaged
• Scheduler re-engages at the start of a new timeslice
• Challenge: pending requests from the token holder of the last timeslice
• To account for overuse: wait for such requests to finish

Disengaged Timeslice Scheduler: prototype

• Discover the semantics of data structures shared between the user
and the GPU
• Reference counter

• Written by the hardware upon the completion of each request.

• Upon re-engaging
• Traverse in-memory structures to find the reference counter of the last

submitted request

• Poll the reference counter for an indication of its completion

Disengaged Timeslice Scheduler: Limitations

• Disengaged Timeslice scheduler
• Not suffering from high per-request management costs

• BUT
• May lead to poor utilization

• When the token holder is unable to keep the accelerator busy

• This problem is addressed by Disengaged Fair Queueing Scheduler

Disengaged Fair Queueing
Scheduler

Task #1 Task #2 Task #3

Operating System

GPU

Trap Memory
and I/O requests

Trap Memory
and I/O requests

Trap Memory and
I/O requests

Fast, Direct
Access to GPU

Disengaged Fair Queueing Scheduler

Usage

1 OK

2 OK

3 OK

Usage

1 OK

2 OK

3 Exceed

Disengaged Free RunEngagement Period

Disengaged Fair Queueing Scheduler

• Achieves fairness while maintaining work-conserving properties
• i.e., it avoids idling the resource when there is pending work to do

• A standard fair queueing scheduler
• Assigns a start tag and a finish tag to each resource request

• Tags serve as
• Task’s cumulative resource usage before and after the request’s execution

• Start tag
• MAX[Current system virtual time (as of request submission), Finish tag (prev. request)]

• Finish tag
• The start tag plus the expected resource usage of the request

Disengaged Fair Queueing Scheduler (cont.,)

• Multiple requests (potentially from different tasks) -> Active Tasks
• Dispatched to the device at the same time

• GPUs have internal schedulers (e.g., Round Robin)

• A fair queueing scheduler on Inactive Tasks
• Might build up its resource credit without bound

• Sudden reclamation with burst

• Causing prolonged unresponsiveness to other tasks

• Solution: Reflect only the progress of active tasks
• Since the start tag of each submitted request is brought forward to at least the system

virtual time, any claim to resources from a task’s idle period is forfeited

Disengaged Fair Queueing Scheduler: Prototype

Disengaged Fair Queueing Scheduler: Limitations

• In principle, better estimates might be based on more detailed
reverse engineering of the GPU’s internal scheduling algorithm

• Estimation can be imprecise, resulting in imperfect fairness

• Random vs Periodic behavior

Implementation

• Linux 3.4.7 kernel

• About 8000 lines of code
• ioctl

• mmap

• munmap

• copy_task

• exit_task

• do_page_fault

• Few hooks to the Nvidia driver’s
binary interface
• initialization

• ioctl

• mmap requests

Implementation (cont.,)

1. Initialization phase
• Identify: virtual memory areas

• All memory-mapped device registers
• Buffers associated with a given channel

• Channel: a GPU request queue and its associated software infrastructure

2. Page-fault–handling mechanism
• Catch: device register writes -> request submission

3. Polling-thread service
• In kernel

• Detect reference-counter updates
• Identify completion of previously submitted requests

• 2 and 3: kernel internal interface for event-based scheduler

Results

Results
Developed a “Throttle” microbenchmark

Real-Time vs Non Real-Time

Area Disengaged [ASPLOS 14] Real-Time [RTSS 13]

Real-Time Properties None Soft Real-Time

Scheduler Structure Token + Queue Priority Queue + FIFO

Number of GPUs One Multiple GPU (migration between GPUs)

Target Application Not Application Specific Real-Time Applications in Self-Driving Cars

Approach Scheduling Problem Synchronization Problem

Goal Reduce OS Management
Overhead

Improve Average Case Performance and
Maintaining the Soft Real-Time Constraints

?

1. Konstantinos Menychtas, Kai Shen, and Michael L. Scott. “Disengaged scheduling for fair,
protected access to fast computational accelerators”. In Proceedings of the 19th international
conference on Architectural support for programming languages and operating systems
(ASPLOS '14). ACM, New York, NY, USA, 301-316.

2. Menychtas, Konstantinos, Kai Shen, and Michael L. Scott. "Enabling OS Research by Inferring
Interactions in the Black-Box GPU Stack." USENIX Annual Technical Conference. 2013.

Thanks!
Amir

Protected Scheduling with Efficiency

• Kernel Perspective
• Accelerators are Event-Based Interfaces

• Start time
• Complete time

• Cost of OS management
• Trapping to the OS

• Via syscalls or faults
• Carries nontrivial costs

• User/kernel mode switch => thousands of CPU cycles

• Direct request submission:
• 365 cycle on Nvidia GTX670

Overview of Schedulers

• Timeslice scheduler
• Retains the overhead of per-request kernel intervention
• Shares the GPU fairly

• Unmodified applications

• Disengaged Timeslice scheduler
• Extends Timeslice scheduler
• Eliminates kernel intervention in most cases

• Timeslice Limitation: Only one application at a time uses the accelerator

• Disengaged Fair Queueing scheduler
• Facilitates multiple application usage
• BUT, Provides only statistical guarantees of fairness

Disengaged Fair Queueing Scheduler: Design

• Efficiency
• Avoiding intercepting and manipulating most requests

• Track cumulative per-task resource usage and system-wide virtual time

• No per-request control

• Start/finish tags
• A probabilistically-updated per-task virtual time
• Closely approximates the task’s cumulative resource usage
• Time values are updated using statistics obtained through periodic engagement

• Control coarse grain:
• Disable tasks that are running ahead in resource usage

• Interval between consecutive engagements

• Allow their peers to catch up

• NOTE: Requests from all other tasks are allowed to run freely in the disengaged time interval

Experimental Evaluation

