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Fast Computational Accelerators
Introduction



Example: GPU
Nvidia GTX 1070

First: 1970 in arcade games

In the home market, the Atari 2600 in 1977 
used a video shifter called the Television 
Interface Adaptor

Nvidia GeForce 3 : 2001

https://wccftech.com/nvidia-gtx-1080-
gp104-die-shot/

https://Wikipedia.com

https://wccftech.com/nvidia-gtx-1080-gp104-die-shot/
https://wikipedia.com/


Today
Mobile SoCs

Iphone Xs Max

A12 Bionic chip

Apple-designed 64-bit ARMv8.3-A 6-Core CPU

Apple-designed 4-Core GPU



Shortcoming

• Operating System has no control over hardware accelerators.

• Why?
• HIGH Overhead

• e.g., Direct GPU accesses from user
• Management in OS requires Interrupts

• Interrupts are too costly

• GPUs are Black-Boxes for the OS
• No sufficient information from vendors



GPUs: Black Boxes [USENIX 2013]

• Today’s typical GPU architecture
• Device

• Driver

• User-level libraries

• Open Documents:
• High level programing model

• Library interface

• Architectural characteristics
• Performance tuning and high-level 

programing



How are GPUs used?

• For minimal overhead on very low latency GPU requests
• User-level library

• Frequently communicates directly with the device (in both directions)

• Memory-mapped buffers and registers are used

• Bypassing the OS kernel 

• Malicious application:
• Obtain an unfair share of GPU resources (cycles, memory, and bandwidth)

• Kernel has no way to coordinate GPU activity with other aspects of resource 
management in pursuit of system-wide objectives.



We Need More Information on GPUs

• Protected OS-level resource management 
• A pressing need

• To satisfy this need:
• The kernel must be able to:

• Identify and delay GPU request submissions

• Tell when requests complete

• Need for clean interface to expose this information
• Hopefully be provided by vendors in the near future



Open The Black-Box
Previous Work [USENIX 2013]



“Model the black-box stack as a state 
machine that captures only as much 
as we need to know to manage 
interactions with the rest of the 
system.” 
High-Level Solution



Language Words



State Machine Case 
Study



Lesson Learned

• State Machine:
• Request handling by the system

• Interface for more direct involvement of the operating system

• NOTE: We can intercept and intercede on request making and 
request-completion events
• Make a scheduling decision that reflects its own priorities and policy. 



Scheduling for Fair, Protected
Access to Fast Computational 
Accelerators
Problem Statement

ASPLOS 2014



Prerequisites

• Future Microprocessors: Highly Heterogeneous
• Hardware accelerators 

• Current OS: No control over accelerators 
• Application with larger requests: receives more time

• Greedy application hog the GPU

• Malicious application may launch a denial-of-service (DoS) attack



Modern Accelerator Systems

• Two major challenges:

• First
• Low Latency

• Bypassing the OS
• No resource management

• Second
• NO information on accelerators

• Hardware interface for accelerators
• Hidden from programmers



Task

Operating System

GPU

Fast, Direct 
Access to GPU

How are GPUs Used?

Memory Mapping



Timeslice with Overuse Control



Task #1 Task #2 Task #3

Operating System

GPU

Trap Acceleration 
Request

Overhead

Thousands of 
cpu cycles

Fast, Direct 
Access to GPU
~ 350 cycles

Timeslice Scheduler

Trap Acceleration 
Request

Trap Acceleration 
Request



Timeslice with Overuse Control 

• Fairness:
• Upon the completion of requests that overrun the end of a timeslice

• Deduct their excess execution time from future timeslices of the submitting 
task

• Charge the token holder
• Sometimes: skip the task’s next turn(s) 



Timeslice with Overuse Control: prototype

• Protection against over-long requests
• Killing the offending task

• Leave the accelerator in a clean state
• Let the existing accelerator stack follow its normal exit protocol

• Returning occupied resources back to the available pool

• Cleanup depends on (undocumented) accelerator features
• It appears to work correctly on modern GPUs



Timeslice with Overuse Control: Limitations

• Two efficiency drawbacks
1. Interrupt-based requests

• Significant overhead on fast accelerators

2. Not work-conserving: 
• The accelerator may be idled during the timeslice of a task that temporarily has no 

requests 

• e.g., Other tasks are waiting for accelerator access



Disengagement
Solution

Disengaged Timeslice scheduler: tackles the overhead problem
Disengaged Fair Queueing scheduler: tackles the problem of resource idleness



High-Level Overview

• key idea, called Disengagement
• OS resource scheduler

• Maintain fairness
• Only: Interceding on a small number of acceleration requests 

• How? => Disabling the direct mapped interface and intercepting resulting faults

• Majority of requests
• Unhindered direct access



Disengaged Timeslice Scheduler



Task #1 Task #2 Task #3

Operating System

GPU

Memory Mapping Memory Mapping Memory Mapping

Fast, Direct 
Access to GPU

Disengaged Timeslice Scheduler



Disengaged Timeslice Scheduler 

• Difference:
• Direct, unmonitored access
• For token holder, In its Timeslice

• NOTE: Interception is not required for all requests

• When passing the token between tasks
• OS updates page tables to enable or disable direct access
• Largely disengaged
• Scheduler re-engages at the start of a new timeslice
• Challenge: pending requests from the token holder of the last timeslice
• To account for overuse: wait for such requests to finish



Disengaged Timeslice Scheduler: prototype

• Discover the semantics of data structures shared between the user 
and the GPU
• Reference counter

• Written by the hardware upon the completion of each request.

• Upon re-engaging
• Traverse in-memory structures to find the reference counter of the last 

submitted request

• Poll the reference counter for an indication of its completion



Disengaged Timeslice Scheduler: Limitations

• Disengaged Timeslice scheduler
• Not suffering from high per-request management costs

• BUT
• May lead to poor utilization

• When the token holder is unable to keep the accelerator busy

• This problem is addressed by Disengaged Fair Queueing Scheduler



Disengaged Fair Queueing 
Scheduler



Task #1 Task #2 Task #3

Operating System

GPU

Trap Memory 
and I/O requests

Trap Memory 
and I/O requests

Trap Memory and 
I/O requests

Fast, Direct 
Access to GPU

Disengaged Fair Queueing Scheduler

# Usage

1 OK

2 OK

3 OK

# Usage

1 OK

2 OK

3 Exceed

Disengaged Free RunEngagement Period



Disengaged Fair Queueing Scheduler 

• Achieves fairness while maintaining work-conserving properties
• i.e., it avoids idling the resource when there is pending work to do

• A standard fair queueing scheduler
• Assigns a start tag and a finish tag to each resource request

• Tags serve as
• Task’s cumulative resource usage before and after the request’s execution

• Start tag
• MAX[Current system virtual time (as of request submission), Finish tag (prev. request)]

• Finish tag
• The start tag plus the expected resource usage of the request



Disengaged Fair Queueing Scheduler (cont.,)

• Multiple requests (potentially from different tasks) -> Active Tasks
• Dispatched to the device at the same time

• GPUs have internal schedulers (e.g., Round Robin)

• A fair queueing scheduler on Inactive Tasks
• Might build up its resource credit without bound 

• Sudden reclamation with burst

• Causing prolonged unresponsiveness to other tasks

• Solution: Reflect only the progress of active tasks
• Since the start tag of each submitted request is brought forward to at least the system 

virtual time, any claim to resources from a task’s idle period is forfeited



Disengaged Fair Queueing Scheduler: Prototype



Disengaged Fair Queueing Scheduler: Limitations

• In principle, better estimates might be based on more detailed 
reverse engineering of the GPU’s internal scheduling algorithm

• Estimation can be imprecise, resulting in imperfect fairness

• Random vs Periodic behavior



Implementation

• Linux 3.4.7 kernel

• About 8000 lines of code 
• ioctl

• mmap

• munmap

• copy_task

• exit_task

• do_page_fault

• Few hooks to the Nvidia driver’s 
binary interface
• initialization

• ioctl

• mmap requests 



Implementation (cont.,)

1. Initialization phase
• Identify: virtual memory areas

• All memory-mapped device registers
• Buffers associated with a given channel

• Channel: a GPU request queue and its associated software infrastructure

2. Page-fault–handling mechanism
• Catch: device register writes -> request submission

3. Polling-thread service
• In kernel

• Detect reference-counter updates
• Identify completion of previously submitted requests

• 2 and 3: kernel internal interface for event-based scheduler



Results



Results
Developed a “Throttle” microbenchmark



Real-Time vs Non Real-Time

Area Disengaged [ASPLOS 14] Real-Time [RTSS 13]

Real-Time Properties None Soft Real-Time

Scheduler Structure Token + Queue Priority Queue + FIFO

Number of GPUs One Multiple GPU (migration between GPUs)

Target Application Not Application Specific Real-Time Applications in Self-Driving Cars

Approach Scheduling Problem Synchronization Problem

Goal Reduce OS Management 
Overhead

Improve Average Case Performance and 
Maintaining the Soft Real-Time Constraints
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Amir



Protected Scheduling with Efficiency

• Kernel Perspective
• Accelerators are Event-Based Interfaces

• Start time
• Complete time

• Cost of OS management
• Trapping to the OS

• Via syscalls or faults
• Carries nontrivial costs

• User/kernel mode switch => thousands of CPU cycles 

• Direct request submission:
• 365 cycle on Nvidia GTX670 



Overview of Schedulers

• Timeslice scheduler
• Retains the overhead of per-request kernel intervention
• Shares the GPU fairly

• Unmodified applications

• Disengaged Timeslice scheduler
• Extends Timeslice scheduler
• Eliminates kernel intervention in most cases

• Timeslice Limitation: Only one application at a time uses the accelerator

• Disengaged Fair Queueing scheduler
• Facilitates multiple application usage
• BUT, Provides only statistical guarantees of fairness



Disengaged Fair Queueing Scheduler: Design

• Efficiency
• Avoiding intercepting and manipulating most requests

• Track cumulative per-task resource usage and system-wide virtual time

• No per-request control

• Start/finish tags
• A probabilistically-updated per-task virtual time
• Closely approximates the task’s cumulative resource usage
• Time values are updated using statistics obtained through periodic engagement

• Control coarse grain:
• Disable tasks that are running ahead in resource usage

• Interval between consecutive engagements

• Allow their peers to catch up

• NOTE: Requests from all other tasks are allowed to run freely in the disengaged time interval



Experimental Evaluation


