Disengaged Scheduling
For
Fair, Protected Access to
Fast Computational Accelerators

Amir Taherin
Prof. Dwarkadas

CSC 456: Operating Systems Course

Fast Computational Accelerators

Introduction

Example: GPU
Nvidia GTX 1070

First: 1970 in arcade games

In the home market, the Atari 2600 in 1977
used a video shifter called the Television
Interface Adaptor

Nvidia GeForce 3 : 2001

https://wccftech.com/nvidia-gtx-1080-
gp104-die-shot/

https://Wikipedia.com

https://wccftech.com/nvidia-gtx-1080-gp104-die-shot/
https://wikipedia.com/

Today

Mobile SoCs

Iphone Xs Max
A12 Bionic chip

Apple-designed 64-bit ARMv8.3-A 6-Core CPU

Apple-designed 4-Core GPU

Image signal processor
Depth engine

HEVC encoder

HEVC decoder

Video processor

64-bit control CPUs

Apple performance controller
Secure Enclave

Display engine

Memory controller ' | Neu ra|
System cache :
Engine

High-performance fabric
Always-on processor
Audio subsystem

Fast storage controller

Shortcoming

* Operating System has no control over hardware accelerators.

 Why?
* HIGH Overhead

e e.g., Direct GPU accesses from user

* Management in OS requires Interrupts
* Interrupts are too costly

e GPUs are Black-Boxes for the OS

 No sufficient information from vendors

GPUs: Black Boxes [USENIX 2013]

Application-specific APIs, i i
usually standardized Appllcatlon

Application-Library interface

(e.9. OpenCL/GLVG, DirectX) ~_
software/hardware structs Library .
° DeV|Ce (e.g. command buffers) Compute, Graphics, Multimedia
. System calls
¢ Drlver (e.g. ioctl, open, % User- Kernel interface
e Use r'level Iibra ries 0S-kernel resource oS kemels"”ﬂ
between
. (e.g. kmalloc, mmap, miock) 'f"""‘:" boxes
* Open Documents: R GPU M
¢ ngh |eve| programlng mOdeI mofﬂséisﬁe?;gmgtiﬁmms Hardware- Software interface
* Architectural characteristics
* Performance tuning and high-level Figure 1: The GPU software/hardware architecture,
dicate open system/application components while black
areas indicate black-box components without published

’ [} o
* Today’s typical GPU architecture Codesigned
Crypto, XML parsing, PL (e.g. Java bytecode)
read, write, close)
management calls
Load/Store to mmapped drives
o L| bra ry |nte rfa Ce Integrated or bus-accessible L % CPU
accelerators described only = discrete board N cores integrated S
: : : for performance tuning ///
programing with notes on interfaces and components. Gray areas in-
specifications or behaviors.

How are GPUs used?

* For minimal overhead on very low latency GPU requests
e User-level library
* Frequently communicates directly with the device (in both directions)
* Memory-mapped buffers and registers are used
e Bypassing the OS kernel

* Malicious application:
e Obtain an unfair share of GPU resources (cycles, memory, and bandwidth)

* Kernel has no way to coordinate GPU activity with other aspects of resource
management in pursuit of system-wide objectives.

We Need More Information on GPUs

* Protected OS-level resource management
* A pressing need

 To satisfy this need:

* The kernel must be able to:
* |dentify and delay GPU request submissions
* Tell when requests complete

* Need for clean interface to expose this information
* Hopefully be provided by vendors in the near future

Schrodinger’s cat

Open The Black-Box

Previous Work [USENIX 2013]

“Model the black-box stack as a state
machine that captures only as much
as we need to know to manage
interactions with the rest of the

system.”

High-Level Solution

Language Words

Event type Meaning
ioctl:0x7?7? ioctl request : unique hex id
map: [pin|reg|fb|sys] | mmap : address space
R: [pin|reg|fb|sys] read : address space
W: [pin|reg|fb|sys] write : address space
pin locked (pinned) pages
reg GPU register area
fb GPU frame buffer
SysS kernel (system) pages

Table 1: Event types and (for map, R, and w) associated
address spaces constitute the alphabet of the regular lan-
guage / GPU state machine we are trying to infer.

.CREATE
@ ioctl:0x4a
locttihce octl:0x2

State Machine Case
Study

Lesson Learned

e State Machine:

* Request handling by the system
* Interface for more direct involvement of the operating system

* NOTE: We can intercept and intercede on request making and
request-completion events

* Make a scheduling decision that reflects its own priorities and policy.

Scheduling for Fair, Protected
Access to Fast Computational
Accelerators

Problem Statement
ASPLOS 2014

Prerequisites

* Future Microprocessors: Highly Heterogeneous
* Hardware accelerators

* Current OS: No control over accelerators
* Application with larger requests: receives more time
* Greedy application hog the GPU
* Malicious application may launch a denial-of-service (DoS) attack

Modern Accelerator Systems

* Two major challenges:

* First

* Low Latency

* Bypassing the OS

e Second

* NO information on accelerators

* No resource management

e Hardware interface for accelerators

e Hidden from programmers

Library, C e Library, User
runtime Application| [Application runtime space
T
rmma,, o¥sCalS et
-~ ="

LO¥ST LD/ST
to to Kernel
directly D13 OS Kernel directly " Dare

mapped mapped

register y Y register
o LD/ST yInterrupts
Accelerator Hardware

Figure 1. For efficiency, accelerators (like Nvidia GPUs)
receive requests directly from wuser space, through a
memory-mapped interface. The syscall-based OS path is
only used for occasional maintenance such as the initializa-
tion setup. Commonly, much of the involved software (li-
braries, drivers) and hardware is unpublished (black boxes).

Memory Mapping

Fast, Direct

Access to GPU Operating System

How are GPUs Used?

Timeslice with Overuse Control

Fast, Direct
Access to GPU
~ 350 cycles

Timeslice Scheduler

Task #1

Trap Acceleration
 Request

Task #2

Trap Acceleration
Request

Operating Systein

GPU

Task #3

Trap Acceleration

Request

—

—=— (QOverhead

Thousands of
cpu cycles

Timeslice with Overuse Control

* Fairness:
* Upon the completion of requests that overrun the end of a timeslice

* Deduct their excess execution time from future timeslices of the submitting
task

e Charge the token holder
* Sometimes: skip the task’s next turn(s)

Timeslice with Overuse Control: prototype

* Protection against over-long requests
* Killing the offending task
* Leave the accelerator in a clean state
* Let the existing accelerator stack follow its normal exit protocol
* Returning occupied resources back to the available pool

e Cleanup depends on (undocumented) accelerator features
* |t appears to work correctly on modern GPUs

Timeslice with Overuse Control:

* Two efficiency drawbacks

1. Interrupt-based requests
* Significant overhead on fast accelerators

2. Not work-conserving:

* The accelerator may be idled during the timeslice of a task that temporarily has no
requests

* e.g., Other tasks are waiting for accelerator access

Disengagement

Solution

Disengaged Timeslice scheduler: tackles the overhead problem
Disengaged Fair Queueing scheduler: tackles the problem of resource idleness

High-Level Overview

* key idea, called Disengagement
* OS resource scheduler

* Maintain fairness

* Only: Interceding on a small number of acceleration requests

* How? => Disabling the direct mapped interface and intercepting resulting faults
* Majority of requests

* Unhindered direct access

Disengaged Timeslice Scheduler

Task #2 Task #3

Memory Mapping

Memory Mapping Memory Mapping

y

Operating System

Fast, Direct
Access to GPU

Disengaged Timeslice Scheduler

Disengaged Timeslice Scheduler

e Difference:
e Direct, unmonitored access
* For token holder, In its Timeslice

* NOTE: Interception is not required for all requests

* When passing the token between tasks
* OS updates page tables to enable or disable direct access
 Largely disengaged
* Scheduler re-engages at the start of a new timeslice
* Challenge: pending requests from the token holder of the last timeslice
* To account for overuse: wait for such requests to finish

Disengaged Timeslice Scheduler: prototype

e Discover the semantics of data structures shared between the user
and the GPU

* Reference counter
* Written by the hardware upon the completion of each request.

* Upon re-engaging

* Traverse in-memory structures to find the reference counter of the last
submitted request

* Poll the reference counter for an indication of its completion

Disengaged Timeslice Scheduler:

* Disengaged Timeslice scheduler
* Not suffering from high per-request management costs

* BUT

* May lead to poor utilization
* When the token holder is unable to keep the accelerator busy
* This problem is addressed by Disengaged Fair Queueing Scheduler

Disengaged Fair Queueing
Scheduler

bigagragedirPeei®din

Trap Memory Trap Memory Trap Memory and
and 1/0 requests and I/O requests O requests

Operating System

Fast, Direct
Access to GPU

Disengaged Fair Queueing Scheduler 0\

Disengaged Fair Queueing Scheduler

* Achieves fairness while maintaining work-conserving properties
* j.e., it avoids idling the resource when there is pending work to do

* A standard fair queueing scheduler
* Assigns a start tag and a finish tag to each resource request

* Tags serve as
» Task’s cumulative resource usage before and after the request’s execution

e Start tag

* MAX[Current system virtual time (as of request submission), Finish tag (prev. request)]
* Finish tag

* The start tag plus the expected resource usage of the request

Disengaged Fair Queueing Scheduler (cont.))

* Multiple requests (potentially from different tasks) -> Active Tasks
* Dispatched to the device at the same time
* GPUs have internal schedulers (e.g., Round Robin)

* A fair queueing scheduler on Inactive Tasks

* Might build up its resource credit without bound
e Sudden reclamation with burst
e Causing prolonged unresponsiveness to other tasks

* Solution: Reflect only the progress of active tasks

* Since the start tag of each submitted request is brought forward to at least the system
virtual time, any claim to resources from a task’s idle period is forfeited

Disengaged Fair Queueing Scheduler: Prototype

virtual time maintenance
barrier and scheduling decision barrier

disengaged disengaged free run; -
— drammg-bl(— —)I(— . . draining—
free run sampllng sampllng some tasks may be denied access for fairness

Figure 3. An illustration of periodic activities in Disengaged Fair Queueing. An engagement episode starts with a barrier and
the draining of outstanding requests on the GPU, which is followed by the short sampling runs of active tasks (two tasks 7}
and 75 in the case), virtual time maintenance and scheduling decision, and finally a longer disengaged free-run period.

» timeline

Disengaged Fair Queueing Scheduler:

* In principle, better estimates might be based on more detailed
reverse engineering of the GPU’s internal scheduling algorithm

* Estimation can be imprecise, resulting in imperfect fairness
 Random vs Periodic behavior

Implementation

° Linux 3.4.7 kernel * Few hooks to the Nvidia driver’s
 About 8000 lines of code binary interface

e ioctl * initialization

* mmap * joctl

°* munmap °* Mmmap requests

e copy_task

e exit_task

do_page fault

Implementation (cont.,)

1. Initialization phase

* |dentify: virtual memory areas
* All memory-mapped device registers

e Buffers associated with a given channel
e Channel: a GPU request queue and its associated software infrastructure

2. Page-fault=handling mechanism
e Catch: device register writes -> request submission

3. Polling-thread service

* In kernel
* Detect reference-counter updates
* |dentify completion of previously submitted requests

e 2 and 3: kernel internal interface for event-based scheduler

40 [(Engaged) Timeslice
3 B Disengaged Timeslice
£ 35] Disengaged Fair

R@SUltS g 30! Queueing

E
3 25¢
v 20
2
3 15}
£
o 10
7y

5

Q\(x«e@ N WO QLD & 20

F S S OO S S TSP
O S ST RPE S SR
o S) L AP RTLERLY o
& AN YR SR ¥ ¥
& PR F S
S V¢ >

Figure 4. Standalone application execution slowdown un-
der our scheduling policies compared to direct device access.

N
(4]

40! V—¥ (Engaged) Timeslice
335 &—® Disengaged Timeslice
Results 53& ‘D @ Disengaged Fair Queueing
Developed a “Throttle” microbenchmark -8
S 25}
=
L 20|
2
3 15}
2
o 10;
7))
5t O l
— : . 2 geg—a—1
24 25 96 o7 58 59 10 LIl 12 ,13

Throttle request size (us)

Figure 5. Standalone Throttle execution (at a range of re-
quest sizes) slowdown under our scheduling policies com-
pared to direct device access.

Real-Time vs Non Real-Time

Disengaged [ASPLOS 14]

Real-Time [RTSS 13]

Real-Time Properties
Scheduler Structure
Number of GPUs
Target Application
Approach

Goal

None

Token + Queue

One

Not Application Specific
Scheduling Problem

Reduce OS Management
Overhead

Soft Real-Time

Priority Queue + FIFO

Multiple GPU (migration between GPUs)
Real-Time Applications in Self-Driving Cars
Synchronization Problem

Improve Average Case Performance and
Maintaining the Soft Real-Time Constraints

?

Konstantinos Menychtas, Kai Shen, and Michael L. Scott. “Disengaged scheduling for fair,
protected access to fast computational accelerators”. In Proceedings of the 19th international
conference on Architectural support for programming languages and operating systems
(ASPLOS '14). ACM, New York, NY, USA, 301-316.

Venychtas, Konstantinos, Kai Shen, and Michael L. Scott. "Enabling OS Research by Inferring
Interactions in the Black-Box GPU Stack." USENIX Annual Technical Conference. 2013.

Thanks!

Protected Scheduling with Efficiency

* Kernel Perspective

* Accelerators are Event-Based Interfaces
e Starttime
* Complete time

* Cost of OS management
* Trapping to the OS

* Via syscalls or faults
e Carries nontrivial costs

* User/kernel mode switch =>thousands of CPU cycles

* Direct request submission:
* 365 cycle on Nvidia GTX670

Overview of Schedulers

e Timeslice scheduler

» Retains the overhead of per-request kernel intervention

e Shares the GPU fairly
* Unmodified applications

* Disengaged Timeslice scheduler
* Extends Timeslice scheduler
* Eliminates kernel intervention in most cases

* Timeslice Limitation: Only one application at a time uses the accelerator

* Disengaged Fair Queueing scheduler
* Facilitates multiple application usage
* BUT, Provides only statistical guarantees of fairness

Disengaged Fair Queueing Scheduler: Design

* Efficiency

* Avoiding intercepting and manipulating most requests
* Track cumulative per-task resource usage and system-wide virtual time
* No per-request control

o Start/finish tags
* A probabilistically-updated per-task virtual time
* Closely approximates the task’s cumulative resource usage
* Time values are updated using statistics obtained through periodic engagement

e Control coarse grain:

e Disable tasks that are running ahead in resource usage
* Interval between consecutive engagements

* Allow their peers to catch up
* NOTE: Requests from all other tasks are allowed to run freely in the disengaged time interval

Experimental Evaluation

Application Area us per us per

round | request
BinarySearch Searching 161 57
BitonicSort Sorting 1292 202
DCT Compression 197 66
EigenValue Algebra 163 56
FastWalshTransform | Encryption 310 119
FFT Signal Processing 268 48
FloydWarshall Graph Analysis 5631 141
LUDecomposition Algebra 1490 308
MatrixMulDouble Algebra 12628 637
MatrixMultiplication | Algebra 3788 436
MatrixTranspose Algebra 1153 284
PrefixSum Data Processing 157 55
RadixSort Sorting 8082 210
Reduction Data Processing 1147 282
ScanLargeArrays Data Processing 197 72
glxgears Graphics 72 37
oclParticles Physics/Graphics 2006 12/302
simpleTexture3D Texturing/Graphics 108/171

Table 1. Benchmarks used in our evaluation. A “round” is
the performance unit of interest to the user: the run time of
compute “kernel(s)” for OpenCL applications, or that of a
frame rendering for graphics or combined applications. A
round can require multiple GPU acceleration requests.

