
12/6/2018

1

THE GOOGLE FILE SYSTEM*

CSC 256/456 – UNIVERSITY OF ROCHESTER JING ZHANG

*GHEMAWAT, SANJAY, HOWARD GOBIOFF, AND SHUN-TAK LEUNG. "THE GOOGLE FILE SYSTEM." 
ACM SIGOPS OPERATING SYSTEMS REVIEW. VOL. 37. NO. 5. ACM, 2003. 

Motivation

• Common design goals

• Performance, scalability, reliability & availability

• Design driven by Google’s application workloads and 

technological environment 

• Component failures are the norm rather than the exception.

• Fault tolerance, automatic recovery …

• Files are huge by traditional standards. 

• Block size assumption …

• Record appends are prevalent than random writes.

• Focus on ”appending” for performance optimization 

Design Overview

--Architecture 

• One Master, multiple Chunkservers, accessed

by multiple clients.

• Files are divided into fixed size chunk. (64MB)

• Global unique “chunk handle” (64bit)

• Replication on multiple chunkservers

Heartbeat Message

• Master:

• Maintain all file system metadata.

• Namespace, access control information, mapping from files to chunks,

chunk locations ….

• Send Heartbeat Messages to chunkservers periodically

• Instructions, state monitoring.

• Client:

• Communicate with Master for metadata.

• Clients usually cache master’s replies (chunk handle & locations of

replicas)

• Communicate with Chunkservers for data read/write.

Design Overview

--Architecture 



12/6/2018

2

AFS/NFS GFS

- Single level architecture 

- Sever also contains data 

- Two levels architecture 

- Separate control and data flow 

Design Overview

--Architecture 

Comparison with AFS/NFS

Single Master is a simpler design, but need to avoid bottleneck:

• Minimize Master’s involvement in reads & write.

→ Separate control flow & data flow.

• Speed up Master’s operations.

→ Metadata is all in-memory.

Design Overview
-- Metadata

• Metadata includes:

• File and chunk namespaces

• Mapping from files to chunks

• Location of each chunk replicas

• All metadata is stored in Master’s memory

• Master does NOT keep a persistent record of chunk locations.

• Operation Log

• Timeline for the order of concurrent operations

• Stored on Master’s Local Disk and replicated on remote machines

• Recover file system state by replaying operation logs

• Checkpoints

Design Overview
-- Interface 

• Common file operations:

• Create, delete, read, write, open & close.

• Moreover:

• Snapshot (copy-on-write)

• Atomic Record append

System Interactions
Lease & Mutation Order

• Each mutation should be performed at all replicas.

• Master grants a Lease to one of the replicas, making it the

primary replica.

• Primary picks a serial order for replicas to be mutated.

• Lease has an initial timeout of 60 seconds.

• Can be extended.

• Or can be revoked before expiration.

How? Heartbeat Message



12/6/2018

3

System Interactions
-- Dataflow

System Interactions
-- Atomic Record Appends

• Client specify only the data, GFS choose the offset when appending data

to files.

• Primary replica check if the data size would cause chunk-size overflow.

• If so, it pads the chunk to the max size, tells secondary to do the same; and replies

to Client to retry on next chunk.

• If coming across failures, retry. → Duplication in some replicas.

Relaxed Consistency Model

• A file region is consistent if all clients will always see the same data, 

regardless of which replicas they read from. 

• A region is defined after a file data mutation if it is consistent and 

clients will see what the mutation writes in its entirety. 

• Write vs. Record Append

Try write again when

coming across failure.

Duplication

Namespace Management 
-- Locking

• Lookup table mapping full pathname to metadata.

• Each absolute file name or directory name has an associated

read-write lock.

• Example: create /dir1/dir2/file

read_lock (/dir1) 

read_lock (/dir1/dir2) 

write_lock (/dir1/dir2/file) 

create file 

unlock (/dir1/dir2/file) 

unlock (/dir1/dir2) 

unlock (/dir1)

- Allow concurrent mutations

in the same directory.

- By locking new file before it 

is created: no file with same

name will be created

simultaneously.



12/6/2018

4

Namespace Management 
-- Deadlock Prevention

• Deadlock Prevention

• Recall: 4 necessary conditions

• Google file system

• First ordered by level in the namespace tree 

• Lexicographically within the same level 

Circular Wait Condition

Not Allowed

P1

P2

Write_lock(/dir/fileA)

Write_lock(/dir/fileB)

Fault Tolerance
-- High Availability 

• Fast Recovery

• Log & Checkpoint

• Replication

• Chunk replication

• Each chunk has 3 replicas by default.

• Re-replication is triggered once the number of replicas fall below a

user-specified goal.

• Master replication

• Metadata replicas on multiple remote machine.

• Shadow masters provides read-only access.

Summary

• A file system designed only for Google

• Huge files → Huge chunk size

• High demands of record appending →Atomic Record Append

• … …

• A file system might not be adoptable in other systems, but

very inspiring.

“The design is driven by Google’s application 

workloads and technological environment. ”

Reference 

[1] Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. 

"The Google file system." ACM SIGOPS Operating Systems 

Review. Vol. 37. No. 5. ACM, 2003. 

[2] https://www.slideshare.net/romain_jacotin/the-google-file-

system-gfs


