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Motivation



Shortcomings in the existing OS design

• Most operating systems in use today are written in C, which is
not a type safe or memory safe language.

• They depend on hardware like MMU for process isolation, this is
expensive.

• They allow processes to share memory and concurrently write
read with synchronization in order to be more efficient but allow
bugs and attacks.

• There is no way for a program to declare what is does, or for the
system to check what a program does.
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Most conventional operating systems have not evolved to use the
advancements in the areas of programming language, protection
model, system abstractions, etc. singularity began with the goal of

• designing a software stack from scratch for improved
dependability and trustworthiness by utilizing better
programming languages and verification tools that are now
available.
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singularity has three key architectural features:

• Software isolated processes - this provides an environment for
program execution protected from external interference

• Contract based channels - enable fast, verifiable message based
communication between processes.

• Manifest based programs - define the code that runs within a
SIP.
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Software Isolated Processes



Process Isolation In Hardware

• Segmentation, paging have provided isolation of process
memories.

• In order to map different process virtual addresses to different
physical addresses, the OS depends on MMU.

• every page has access bits associated which tell what operations
can be performed on that page, read or write or execute.

• Privileged operations are performed in kernel mode by raising
an interrupt for transitioning to privileged mode.

• The cost of this implementation is high.
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Software Isolated Processes

• SIP similar to processes is a holder of processing resources and
provides context of execution [3][1].

• unlike conventional processes, SIP depends on programming
language Sing# and its compiler to provide safe code isolation,
type, memory safety. Each SIP has its own layout, garbage
collector.

• SIPs are sealed code spaces, they prohibits dynamic code
loading, self-modifying code, shared memory, and limits the
scope of the process API [2].

• SIPs access common data over exchange heaps and
communication between SIPs happens through messages and
protocol for communication are specified by a channel contract
and is also statically verifiable.

• SIPs access primitive kernel functions through given ABIs
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Contract Based Channels



Contract Based Channels

• All communications across SIPs happen via contract based
channels

• a channel is bidirectional lossless message queue with exactly
two endpoints, an endpoint belongs to exactly 1 thread at a time

• the communication is described by a contract, which consists of
message declarations and protocol states.

• each state specifies the possible message sequences leading to
another state and message declarations have number and types
of arguments and message direction.
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Figure 1: Pointers in Process Heap and Exchange Heap

[3]
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Contract to access network device driver

contract NicDevice {
out message DeviceInfo(...);
in message RegisterForEvents(NicEvents.Exp:READY c);
in message SetParameters(...);
out message InvalidParameters(...);
out message Success();
in message StartIO();
in message ConfigureIO();
in message PacketForReceive(byte[] in ExHeap p);
out message BadPacketSize(byte[] in ExHeap p, int m);
in message GetReceivedPacket();
out message ReceivedPacket(Packet * in ExHeap p);
out message NoPacket();
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state START: one {
DeviceInfo! → IO_CONFIGURE_BEGIN;
}
state IO_CONFIGURE_BEGIN: one {
RegisterForEvents? →
SetParameters? → IO_CONFIGURE_ACK;
}

state IO_CONFIGURED: one {
StartIO? → IO_RUNNING;
ConfigureIO? → IO_CONFIGURE_BEGIN;
}
state IO_RUNNING: one {
PacketForReceive? → (Success! or BadPacketSize!)
→ IO_RUNNING;
GetReceivedPacket? → (ReceivedPacket! or NoPacket!)
→ IO_RUNNING;
}}
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• The language Sing# is an extension of C#, suited to OS
communication primitives, code re-factoring, etc.

• Sing# compiler verifies that messages are not applied to wrong
state.

• a separate contract verifier checks which program uses which
contract.
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Manifest Based Programs



Manifest Based Programs

• A manifest for a program describes required system resources,
desired capabilities, dependencies etc.

• At install time the manifest is used to verify that the code meets
safety property, does not interfere with previously installs MBPs.

• manifest is a machine check-able declarative expression of
MBP’s behaviour.

• every component is software is described by a manifest,
including kernel, device drivers, applications.
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Singularity Kernel



Kernel’s Role

• Kernel does resource distribution amongst competing
processes. The singularity kernel is a micro-kernel, all device
drivers, file-system, user application run in SIPs.. Kernel does
destroying and creating SIPs and channels.

• Privileged instructions are allowed to run in SIPs to prevent
illegitimate access.

• 90% of the kernel is written in Sing#, 6% in C++ and some code
exists in assembly.
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Singularity Kernel Architecture

Figure 2: Singularity Microkernel

[2]
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Kernel’s Implementation

• ABI - SIPs access primitive kernel facilities via ABI. higher level
services are accessed via channels.

• Memory Management - SIPs get memory by ABI calls, has a
stack per thread, can access exchange heap.

• Threads - all threads are kernel threads, scheduler is optimized
for handling large number of threads that communicate
frequently.

• GC - each SIP has its own GC suited to its need
• Access Control - each inbound channel has a single access
control associated, that serves as the subject for access control
decisions.
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Conclusion

The benefits of tight feedback cycle among programming languages,
OS architectures and verification tools can be leverages to build
secure and robust systems.
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