
Presenter: Soubhik Ghosh, 12/11/2018

GPUFS:A FILESYSTEM INTERFACE FOR GPUS
Mark Silberstein, Bryan Ford, Idit Keidar, Emmett Witchel

ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.

2

AGENDA

Background of GPU Computing

Common Issues: Lack of OS abstractions

Solution - GPUfs

Implementation of GPUfs

3

GPU INTRODUCTION

GPU: Graphics processing unit

Thousands of Cores

Very high memory bandwidth

Evolved

From real-time, high-definition 3D graphics

To compute intensive general purpose processor

Available on most systems/can be easily installed

Following Moore's Law better than CPU!

4

GPU COMPUTING

The new Heterogenous
computing!

Application Code

+

GPU CPU

Use GPU to
Parallelize

Compute-Intensive
Functions

Rest of Sequential
CPU Code

5

ARCHITECTURE
Software layer

Each thread runs sequential code

Threads are organized into a block
(Note: Each block is broken into warps
of 32 threads)

Blocks are organized into a grid

#(Blocks) >= #(Multiprocessor)

No preemption

#(Threads) >= #(core)

Interleaved

6

ARCHITECTURE

Programming Model

CPU initializes the GPU

Tasks are sent to the GPU in the form of
kernel functions.

Each kernel function is logically mapped to
a grid instance.

CPU manages GPU memory
allocation/deallocation

CPU decides block/grid size

7

GPU COMPUTING CHALLENGES
Lacks core system abstractions

Files, sockets

Incapable of initiating basic system interactions for itself

Complex GPU-CPU data management

No Memory coherence

Complex GPU-CPU interconnect topologies

PCIe, NVLink

Different CPU-GPU interconnect
latencies/bandwidth

8

EXAMPLE OF CHALLENGES

CPU Code b c

while (TRUE) {

DataSet1()
…..

DataSet2()
…..

DataSet3()
…..

}

a

b

c

GPU code

CPU code

a b ca b ca

Consider this application…

9

EXAMPLE OF CHALLENGES

CPU Code

GPU Code

Problems!

1. Complex low-level data management code

2. Bounded buffer problem

3. Data inconsistency problem (Double Buffering)

a

b c

c

CPU changes

data c

Data out of

sync

Variable sized buffer

not supported
Fixed Buffer

size

Code

overhead

Code

overhead

Code

overhead

10

MOTIVATION OF GPUFS

GPUFS: GPU filesystem

File system abstraction for GPU applications

Hide GPU-CPU data management

cudaMalloc, cudaMemcpy, cudaFree

Oblivious to data catching - Device memory, system memory, Disk

Hide access locality optimizations and memory coherency

POSIX style API

open, read, write, close, mmap, munmap

GPU-CPU portable

11

EXAMPLE OF SOLUTION

CPU Code

GPU Code

a

b c

c

CPU changes

data c

Data in sync

Automatic buffer

management

No Code

Overhead

• Data Reuse
• Random Access

GPUfs

GPUfs CPU

Daemon

GPUfs GPU
linked library

12

GPUFS: APPLICATION VIEW

Persistent

Storage

Host file system

CPUs GPU1 GPU2 GPU3

POSIX (CPU-like) API

GPUfs

POSIX API

13

GPUFS DESIGN

Every GPU code links GPUfs library

GPUfs library and the host OS work

To coordinate the file-system namespace and data

Cache Filesystem data in CPU/GPU memory

Recall that GPU has multiple granularities

Threads are grouped into warps of 32 threads

Warps are executed in lockstep

GPUfs API works at warp-level granularity

Weak consistency model between GPU and CPU

Strong consistency model inside a GPU

14

GPUFS DESIGN

CPU GPU

Distributed Buffer Cache

GPU MemoryCPU Memory

buffer cache GPU page cache

OS File system interface

GPUfs CPU Daemon
User level RPC Server

• Manage request queue using
cudaMallocManaged

• Listen to data transfer requests (polling)
• Perform data transfer using cudaMemcpy
• Access buffer cache using pread, pwrite

Shared Request queue

GPU Application using

GPUfs

GPUfs GPU linked library
Client

• Maintains open/close file tables, per
file and per page data structures

• Perform page replacement and page
eviction

• Warp level page management
• Push data transfer requests to CPU and

wait for acknowledgement (polling)

DMA

CUDA

15

GPUFS IMPLEMENTATION

Pathname

\boo\bar

GPU fd CPU fd open

rc

permissions Last

modify

Open file table

File data

GPU page cache

Pframes (meta data)

inode number Last

modify

Close file table

Page

offset

fpage

pframe

• Spinlock

• Read/write rc

• Pointer to pframe

Radix tree

• Size of page data

• Dirty status

• Page offset

• GPU fd

Page

offset

32KB

Radix tree leafs are stored in a

FIFO queue

… …

16

GPU BUFFER CACHE
Per-file buffer cache

Files consist of 32KB pages with internal fragmentation

Page is looked by through a radix tree of page offsets.

Radix tree lookup is done using unlocked reads and locked updates using seqlock

Reads are just traversing the tree

Updates consist of adding or removing pages from the tree

Page and its pframe are accessed for reading/writing/evicting actions using spinlock

Buffer cache management (No free page)

Performed when reading/writing to a page not in memory

Culprit page(s) are chosen in the order of -> closed files -> read-only files -> writable files

Flushed accordingly when dirty in writable case

17

GPUFS API

Open and file descriptors – gopen()

GPUfs maintains one global file descriptor(fd)

All threads share one fd per file (No seek pointer)

First gopen() calls POSIX open() and creates GPU fd

Subsequent gopen() increment open reference count

Reads ahead some file data and allocates radix tree for lookup

Checks the close file table first

If timestamp is old or no entry is present then request CPU to transfer data

Else copy the file buffer cache to the open file table

Adds O_NOSYNC

18

GPUFS API

Read and write – gread()/gwrite()

Uses POSIX pread/pwrite semantics

Performs random access using offset

Lookup radix tree for relevant GPU page

If page not present or is dirty then request CPU to transfer the page

Acquire spinlock when reading/writing a particular page

Close and synchronization – gclose()/gfsync()

Decrements open file reference count (orc)

gclose() moves the file buffer from open to the close file table when orc == 0

Both flush the file pages to the CPU buffer through a data transfer request

19

GPUFS API

File mapping – gmmap()/gmunmap()/gmsync()

Map file directly to GPU memory

No separate buffer maintenance unlike gread()

GPUs lack virtual memory management

GPUfs maps a prefix of the file

gmmap returns the size of the prefixed matched

Direct read/write access to mapped memory

gmunmap flushes back to GPU file buffer

GPU app

buffer

GPU buffer cache

gmmap

CPU kernel buffer

GPU app

buffer

Modify

gmunmap

gmsync

Disk

gmsync

20

GPU-CPU REMOTE PROCEDURE CALL

A single thread on CPU polls for requests for every GPU in a round robin fashion

Coordinate data transfers between the CPU and GPU

GPU issues requests to CPU in a shared request queue

Request queue is stored in CPU-GPU shared memory

Uses NVIDIA’s unified memory model

CPU initiates DMA memory transfers to/from GPU buffer cache pages

Uses cudaMemcpy

CPU acknowledges completion of transfer by writing a done status in the request queue
which is polled by GPU library

21

EVALUATION

22

RELATED WORK

Weak-consistency model (close-to-open consistency) similar to AFS
(Andrew File System)

Reading/writing of file data similar to GPFS (General Parallel File
System)

GPUfs read/writes pages parallelly on a warp level granularity

GPFS read/writes blocks parallelly on multiple disks

23

REFERENCES
https://www.cs.utexas.edu/users/witchel/pubs/silberstein13asplos-gpufs.pdf

http://bford.info/pub/os/gpufs-cacm.pdf

https://github.com/gpufs/gpufs

https://www.cs.utexas.edu/users/witchel/pubs/silberstein13asplos-gpufs.pdf
http://bford.info/pub/os/gpufs-cacm.pdf
https://github.com/gpufs/gpufs

